0001:   #ifndef _LINUX_SCHED_H
0002:   #define _LINUX_SCHED_H
0003:   
0004:   #include <uapi/linux/sched.h>
0005:   
0006:   #include <linux/sched/prio.h>
0007:   
0008:   
0009:   struct sched_param {
0010:   	int sched_priority;
0011:   };
0012:   
0013:   #include <asm/param.h>	/* for HZ */
0014:   
0015:   #include <linux/capability.h>
0016:   #include <linux/threads.h>
0017:   #include <linux/kernel.h>
0018:   #include <linux/types.h>
0019:   #include <linux/timex.h>
0020:   #include <linux/jiffies.h>
0021:   #include <linux/plist.h>
0022:   #include <linux/rbtree.h>
0023:   #include <linux/thread_info.h>
0024:   #include <linux/cpumask.h>
0025:   #include <linux/errno.h>
0026:   #include <linux/nodemask.h>
0027:   #include <linux/mm_types.h>
0028:   #include <linux/preempt.h>
0029:   
0030:   #include <asm/page.h>
0031:   #include <asm/ptrace.h>
0032:   #include <linux/cputime.h>
0033:   
0034:   #include <linux/smp.h>
0035:   #include <linux/sem.h>
0036:   #include <linux/shm.h>
0037:   #include <linux/signal.h>
0038:   #include <linux/compiler.h>
0039:   #include <linux/completion.h>
0040:   #include <linux/pid.h>
0041:   #include <linux/percpu.h>
0042:   #include <linux/topology.h>
0043:   #include <linux/proportions.h>
0044:   #include <linux/seccomp.h>
0045:   #include <linux/rcupdate.h>
0046:   #include <linux/rculist.h>
0047:   #include <linux/rtmutex.h>
0048:   
0049:   #include <linux/time.h>
0050:   #include <linux/param.h>
0051:   #include <linux/resource.h>
0052:   #include <linux/timer.h>
0053:   #include <linux/hrtimer.h>
0054:   #include <linux/task_io_accounting.h>
0055:   #include <linux/latencytop.h>
0056:   #include <linux/cred.h>
0057:   #include <linux/llist.h>
0058:   #include <linux/uidgid.h>
0059:   #include <linux/gfp.h>
0060:   #include <linux/magic.h>
0061:   #include <linux/cgroup-defs.h>
0062:   
0063:   #include <asm/processor.h>
0064:   
0065:   #define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
0066:   
0067:   /*
0068:    * Extended scheduling parameters data structure.
0069:    *
0070:    * This is needed because the original struct sched_param can not be
0071:    * altered without introducing ABI issues with legacy applications
0072:    * (e.g., in sched_getparam()).
0073:    *
0074:    * However, the possibility of specifying more than just a priority for
0075:    * the tasks may be useful for a wide variety of application fields, e.g.,
0076:    * multimedia, streaming, automation and control, and many others.
0077:    *
0078:    * This variant (sched_attr) is meant at describing a so-called
0079:    * sporadic time-constrained task. In such model a task is specified by:
0080:    *  - the activation period or minimum instance inter-arrival time;
0081:    *  - the maximum (or average, depending on the actual scheduling
0082:    *    discipline) computation time of all instances, a.k.a. runtime;
0083:    *  - the deadline (relative to the actual activation time) of each
0084:    *    instance.
0085:    * Very briefly, a periodic (sporadic) task asks for the execution of
0086:    * some specific computation --which is typically called an instance--
0087:    * (at most) every period. Moreover, each instance typically lasts no more
0088:    * than the runtime and must be completed by time instant t equal to
0089:    * the instance activation time + the deadline.
0090:    *
0091:    * This is reflected by the actual fields of the sched_attr structure:
0092:    *
0093:    *  @size		size of the structure, for fwd/bwd compat.
0094:    *
0095:    *  @sched_policy	task's scheduling policy
0096:    *  @sched_flags	for customizing the scheduler behaviour
0097:    *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
0098:    *  @sched_priority	task's static priority (SCHED_FIFO/RR)
0099:    *  @sched_deadline	representative of the task's deadline
0100:    *  @sched_runtime	representative of the task's runtime
0101:    *  @sched_period	representative of the task's period
0102:    *
0103:    * Given this task model, there are a multiplicity of scheduling algorithms
0104:    * and policies, that can be used to ensure all the tasks will make their
0105:    * timing constraints.
0106:    *
0107:    * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
0108:    * only user of this new interface. More information about the algorithm
0109:    * available in the scheduling class file or in Documentation/.
0110:    */
0111:   struct sched_attr {
0112:   	u32 size;
0113:   
0114:   	u32 sched_policy;
0115:   	u64 sched_flags;
0116:   
0117:   	/* SCHED_NORMAL, SCHED_BATCH */
0118:   	s32 sched_nice;
0119:   
0120:   	/* SCHED_FIFO, SCHED_RR */
0121:   	u32 sched_priority;
0122:   
0123:   	/* SCHED_DEADLINE */
0124:   	u64 sched_runtime;
0125:   	u64 sched_deadline;
0126:   	u64 sched_period;
0127:   };
0128:   
0129:   struct futex_pi_state;
0130:   struct robust_list_head;
0131:   struct bio_list;
0132:   struct fs_struct;
0133:   struct perf_event_context;
0134:   struct blk_plug;
0135:   struct filename;
0136:   struct nameidata;
0137:   
0138:   #define VMACACHE_BITS 2
0139:   #define VMACACHE_SIZE (1U << VMACACHE_BITS)
0140:   #define VMACACHE_MASK (VMACACHE_SIZE - 1)
0141:   
0142:   /*
0143:    * These are the constant used to fake the fixed-point load-average
0144:    * counting. Some notes:
0145:    *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
0146:    *    a load-average precision of 10 bits integer + 11 bits fractional
0147:    *  - if you want to count load-averages more often, you need more
0148:    *    precision, or rounding will get you. With 2-second counting freq,
0149:    *    the EXP_n values would be 1981, 2034 and 2043 if still using only
0150:    *    11 bit fractions.
0151:    */
0152:   extern unsigned long avenrun[];		/* Load averages */
0153:   extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
0154:   
0155:   #define FSHIFT		11		/* nr of bits of precision */
0156:   #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
0157:   #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
0158:   #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
0159:   #define EXP_5		2014		/* 1/exp(5sec/5min) */
0160:   #define EXP_15		2037		/* 1/exp(5sec/15min) */
0161:   
0162:   #define CALC_LOAD(load,exp,n) \
0163:   	load *= exp; \
0164:   	load += n*(FIXED_1-exp); \
0165:   	load >>= FSHIFT;
0166:   
0167:   extern unsigned long total_forks;
0168:   extern int nr_threads;
0169:   DECLARE_PER_CPU(unsigned long, process_counts);
0170:   extern int nr_processes(void);
0171:   extern unsigned long nr_running(void);
0172:   extern bool single_task_running(void);
0173:   extern unsigned long nr_iowait(void);
0174:   extern unsigned long nr_iowait_cpu(int cpu);
0175:   extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
0176:   
0177:   extern void calc_global_load(unsigned long ticks);
0178:   
0179:   #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
0180:   extern void update_cpu_load_nohz(void);
0181:   #else
0182:   static inline void update_cpu_load_nohz(void) { }
0183:   #endif
0184:   
0185:   extern unsigned long get_parent_ip(unsigned long addr);
0186:   
0187:   extern void dump_cpu_task(int cpu);
0188:   
0189:   struct seq_file;
0190:   struct cfs_rq;
0191:   struct task_group;
0192:   #ifdef CONFIG_SCHED_DEBUG
0193:   extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
0194:   extern void proc_sched_set_task(struct task_struct *p);
0195:   #endif
0196:   
0197:   /*
0198:    * Task state bitmask. NOTE! These bits are also
0199:    * encoded in fs/proc/array.c: get_task_state().
0200:    *
0201:    * We have two separate sets of flags: task->state
0202:    * is about runnability, while task->exit_state are
0203:    * about the task exiting. Confusing, but this way
0204:    * modifying one set can't modify the other one by
0205:    * mistake.
0206:    */
0207:   #define TASK_RUNNING		0
0208:   #define TASK_INTERRUPTIBLE	1
0209:   #define TASK_UNINTERRUPTIBLE	2
0210:   #define __TASK_STOPPED		4
0211:   #define __TASK_TRACED		8
0212:   /* in tsk->exit_state */
0213:   #define EXIT_DEAD		16
0214:   #define EXIT_ZOMBIE		32
0215:   #define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
0216:   /* in tsk->state again */
0217:   #define TASK_DEAD		64
0218:   #define TASK_WAKEKILL		128
0219:   #define TASK_WAKING		256
0220:   #define TASK_PARKED		512
0221:   #define TASK_NOLOAD		1024
0222:   #define TASK_STATE_MAX		2048
0223:   
0224:   #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
0225:   
0226:   extern char ___assert_task_state[1 - 2*!!(
0227:   		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
0228:   
0229:   /* Convenience macros for the sake of set_task_state */
0230:   #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
0231:   #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
0232:   #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
0233:   
0234:   #define TASK_IDLE		(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
0235:   
0236:   /* Convenience macros for the sake of wake_up */
0237:   #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
0238:   #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
0239:   
0240:   /* get_task_state() */
0241:   #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
0242:   				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
0243:   				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
0244:   
0245:   #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
0246:   #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
0247:   #define task_is_stopped_or_traced(task)	\
0248:   			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
0249:   #define task_contributes_to_load(task)	\
0250:   				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
0251:   				 (task->flags & PF_FROZEN) == 0 && \
0252:   				 (task->state & TASK_NOLOAD) == 0)
0253:   
0254:   #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
0255:   
0256:   #define __set_task_state(tsk, state_value)			\
0257:   	do {							\
0258:   		(tsk)->task_state_change = _THIS_IP_;		\
0259:   		(tsk)->state = (state_value);			\
0260:   	} while (0)
0261:   #define set_task_state(tsk, state_value)			\
0262:   	do {							\
0263:   		(tsk)->task_state_change = _THIS_IP_;		\
0264:   		smp_store_mb((tsk)->state, (state_value));		\
0265:   	} while (0)
0266:   
0267:   /*
0268:    * set_current_state() includes a barrier so that the write of current->state
0269:    * is correctly serialised wrt the caller's subsequent test of whether to
0270:    * actually sleep:
0271:    *
0272:    *	set_current_state(TASK_UNINTERRUPTIBLE);
0273:    *	if (do_i_need_to_sleep())
0274:    *		schedule();
0275:    *
0276:    * If the caller does not need such serialisation then use __set_current_state()
0277:    */
0278:   #define __set_current_state(state_value)			\
0279:   	do {							\
0280:   		current->task_state_change = _THIS_IP_;		\
0281:   		current->state = (state_value);			\
0282:   	} while (0)
0283:   #define set_current_state(state_value)				\
0284:   	do {							\
0285:   		current->task_state_change = _THIS_IP_;		\
0286:   		smp_store_mb(current->state, (state_value));		\
0287:   	} while (0)
0288:   
0289:   #else
0290:   
0291:   #define __set_task_state(tsk, state_value)		\
0292:   	do { (tsk)->state = (state_value); } while (0)
0293:   #define set_task_state(tsk, state_value)		\
0294:   	smp_store_mb((tsk)->state, (state_value))
0295:   
0296:   /*
0297:    * set_current_state() includes a barrier so that the write of current->state
0298:    * is correctly serialised wrt the caller's subsequent test of whether to
0299:    * actually sleep:
0300:    *
0301:    *	set_current_state(TASK_UNINTERRUPTIBLE);
0302:    *	if (do_i_need_to_sleep())
0303:    *		schedule();
0304:    *
0305:    * If the caller does not need such serialisation then use __set_current_state()
0306:    */
0307:   #define __set_current_state(state_value)		\
0308:   	do { current->state = (state_value); } while (0)
0309:   #define set_current_state(state_value)			\
0310:   	smp_store_mb(current->state, (state_value))
0311:   
0312:   #endif
0313:   
0314:   /* Task command name length */
0315:   #define TASK_COMM_LEN 16
0316:   
0317:   #include <linux/spinlock.h>
0318:   
0319:   /*
0320:    * This serializes "schedule()" and also protects
0321:    * the run-queue from deletions/modifications (but
0322:    * _adding_ to the beginning of the run-queue has
0323:    * a separate lock).
0324:    */
0325:   extern rwlock_t tasklist_lock;
0326:   extern spinlock_t mmlist_lock;
0327:   
0328:   struct task_struct;
0329:   
0330:   #ifdef CONFIG_PROVE_RCU
0331:   extern int lockdep_tasklist_lock_is_held(void);
0332:   #endif /* #ifdef CONFIG_PROVE_RCU */
0333:   
0334:   extern void sched_init(void);
0335:   extern void sched_init_smp(void);
0336:   extern asmlinkage void schedule_tail(struct task_struct *prev);
0337:   extern void init_idle(struct task_struct *idle, int cpu);
0338:   extern void init_idle_bootup_task(struct task_struct *idle);
0339:   
0340:   extern cpumask_var_t cpu_isolated_map;
0341:   
0342:   extern int runqueue_is_locked(int cpu);
0343:   
0344:   #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
0345:   extern void nohz_balance_enter_idle(int cpu);
0346:   extern void set_cpu_sd_state_idle(void);
0347:   extern int get_nohz_timer_target(void);
0348:   #else
0349:   static inline void nohz_balance_enter_idle(int cpu) { }
0350:   static inline void set_cpu_sd_state_idle(void) { }
0351:   #endif
0352:   
0353:   /*
0354:    * Only dump TASK_* tasks. (0 for all tasks)
0355:    */
0356:   extern void show_state_filter(unsigned long state_filter);
0357:   
0358:   static inline void show_state(void)
0359:   {
0360:   	show_state_filter(0);
0361:   }
0362:   
0363:   extern void show_regs(struct pt_regs *);
0364:   
0365:   /*
0366:    * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
0367:    * task), SP is the stack pointer of the first frame that should be shown in the back
0368:    * trace (or NULL if the entire call-chain of the task should be shown).
0369:    */
0370:   extern void show_stack(struct task_struct *task, unsigned long *sp);
0371:   
0372:   extern void cpu_init (void);
0373:   extern void trap_init(void);
0374:   extern void update_process_times(int user);
0375:   extern void scheduler_tick(void);
0376:   
0377:   extern void sched_show_task(struct task_struct *p);
0378:   
0379:   #ifdef CONFIG_LOCKUP_DETECTOR
0380:   extern void touch_softlockup_watchdog(void);
0381:   extern void touch_softlockup_watchdog_sync(void);
0382:   extern void touch_all_softlockup_watchdogs(void);
0383:   extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
0384:   				  void __user *buffer,
0385:   				  size_t *lenp, loff_t *ppos);
0386:   extern unsigned int  softlockup_panic;
0387:   extern unsigned int  hardlockup_panic;
0388:   void lockup_detector_init(void);
0389:   #else
0390:   static inline void touch_softlockup_watchdog(void)
0391:   {
0392:   }
0393:   static inline void touch_softlockup_watchdog_sync(void)
0394:   {
0395:   }
0396:   static inline void touch_all_softlockup_watchdogs(void)
0397:   {
0398:   }
0399:   static inline void lockup_detector_init(void)
0400:   {
0401:   }
0402:   #endif
0403:   
0404:   #ifdef CONFIG_DETECT_HUNG_TASK
0405:   void reset_hung_task_detector(void);
0406:   #else
0407:   static inline void reset_hung_task_detector(void)
0408:   {
0409:   }
0410:   #endif
0411:   
0412:   /* Attach to any functions which should be ignored in wchan output. */
0413:   #define __sched		__attribute__((__section__(".sched.text")))
0414:   
0415:   /* Linker adds these: start and end of __sched functions */
0416:   extern char __sched_text_start[], __sched_text_end[];
0417:   
0418:   /* Is this address in the __sched functions? */
0419:   extern int in_sched_functions(unsigned long addr);
0420:   
0421:   #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
0422:   extern signed long schedule_timeout(signed long timeout);
0423:   extern signed long schedule_timeout_interruptible(signed long timeout);
0424:   extern signed long schedule_timeout_killable(signed long timeout);
0425:   extern signed long schedule_timeout_uninterruptible(signed long timeout);
0426:   asmlinkage void schedule(void);
0427:   extern void schedule_preempt_disabled(void);
0428:   
0429:   extern long io_schedule_timeout(long timeout);
0430:   
0431:   static inline void io_schedule(void)
0432:   {
0433:   	io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
0434:   }
0435:   
0436:   struct nsproxy;
0437:   struct user_namespace;
0438:   
0439:   #ifdef CONFIG_MMU
0440:   extern void arch_pick_mmap_layout(struct mm_struct *mm);
0441:   extern unsigned long
0442:   arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
0443:   		       unsigned long, unsigned long);
0444:   extern unsigned long
0445:   arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
0446:   			  unsigned long len, unsigned long pgoff,
0447:   			  unsigned long flags);
0448:   #else
0449:   static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
0450:   #endif
0451:   
0452:   #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
0453:   #define SUID_DUMP_USER		1	/* Dump as user of process */
0454:   #define SUID_DUMP_ROOT		2	/* Dump as root */
0455:   
0456:   /* mm flags */
0457:   
0458:   /* for SUID_DUMP_* above */
0459:   #define MMF_DUMPABLE_BITS 2
0460:   #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
0461:   
0462:   extern void set_dumpable(struct mm_struct *mm, int value);
0463:   /*
0464:    * This returns the actual value of the suid_dumpable flag. For things
0465:    * that are using this for checking for privilege transitions, it must
0466:    * test against SUID_DUMP_USER rather than treating it as a boolean
0467:    * value.
0468:    */
0469:   static inline int __get_dumpable(unsigned long mm_flags)
0470:   {
0471:   	return mm_flags & MMF_DUMPABLE_MASK;
0472:   }
0473:   
0474:   static inline int get_dumpable(struct mm_struct *mm)
0475:   {
0476:   	return __get_dumpable(mm->flags);
0477:   }
0478:   
0479:   /* coredump filter bits */
0480:   #define MMF_DUMP_ANON_PRIVATE	2
0481:   #define MMF_DUMP_ANON_SHARED	3
0482:   #define MMF_DUMP_MAPPED_PRIVATE	4
0483:   #define MMF_DUMP_MAPPED_SHARED	5
0484:   #define MMF_DUMP_ELF_HEADERS	6
0485:   #define MMF_DUMP_HUGETLB_PRIVATE 7
0486:   #define MMF_DUMP_HUGETLB_SHARED  8
0487:   #define MMF_DUMP_DAX_PRIVATE	9
0488:   #define MMF_DUMP_DAX_SHARED	10
0489:   
0490:   #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
0491:   #define MMF_DUMP_FILTER_BITS	9
0492:   #define MMF_DUMP_FILTER_MASK \
0493:   	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
0494:   #define MMF_DUMP_FILTER_DEFAULT \
0495:   	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
0496:   	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
0497:   
0498:   #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
0499:   # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
0500:   #else
0501:   # define MMF_DUMP_MASK_DEFAULT_ELF	0
0502:   #endif
0503:   					/* leave room for more dump flags */
0504:   #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
0505:   #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
0506:   #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
0507:   
0508:   #define MMF_HAS_UPROBES		19	/* has uprobes */
0509:   #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
0510:   
0511:   #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
0512:   
0513:   struct sighand_struct {
0514:   	atomic_t		count;
0515:   	struct k_sigaction	action[_NSIG];
0516:   	spinlock_t		siglock;
0517:   	wait_queue_head_t	signalfd_wqh;
0518:   };
0519:   
0520:   struct pacct_struct {
0521:   	int			ac_flag;
0522:   	long			ac_exitcode;
0523:   	unsigned long		ac_mem;
0524:   	cputime_t		ac_utime, ac_stime;
0525:   	unsigned long		ac_minflt, ac_majflt;
0526:   };
0527:   
0528:   struct cpu_itimer {
0529:   	cputime_t expires;
0530:   	cputime_t incr;
0531:   	u32 error;
0532:   	u32 incr_error;
0533:   };
0534:   
0535:   /**
0536:    * struct prev_cputime - snaphsot of system and user cputime
0537:    * @utime: time spent in user mode
0538:    * @stime: time spent in system mode
0539:    * @lock: protects the above two fields
0540:    *
0541:    * Stores previous user/system time values such that we can guarantee
0542:    * monotonicity.
0543:    */
0544:   struct prev_cputime {
0545:   #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
0546:   	cputime_t utime;
0547:   	cputime_t stime;
0548:   	raw_spinlock_t lock;
0549:   #endif
0550:   };
0551:   
0552:   static inline void prev_cputime_init(struct prev_cputime *prev)
0553:   {
0554:   #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
0555:   	prev->utime = prev->stime = 0;
0556:   	raw_spin_lock_init(&prev->lock);
0557:   #endif
0558:   }
0559:   
0560:   /**
0561:    * struct task_cputime - collected CPU time counts
0562:    * @utime:		time spent in user mode, in &cputime_t units
0563:    * @stime:		time spent in kernel mode, in &cputime_t units
0564:    * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
0565:    *
0566:    * This structure groups together three kinds of CPU time that are tracked for
0567:    * threads and thread groups.  Most things considering CPU time want to group
0568:    * these counts together and treat all three of them in parallel.
0569:    */
0570:   struct task_cputime {
0571:   	cputime_t utime;
0572:   	cputime_t stime;
0573:   	unsigned long long sum_exec_runtime;
0574:   };
0575:   
0576:   /* Alternate field names when used to cache expirations. */
0577:   #define virt_exp	utime
0578:   #define prof_exp	stime
0579:   #define sched_exp	sum_exec_runtime
0580:   
0581:   #define INIT_CPUTIME	\
0582:   	(struct task_cputime) {					\
0583:   		.utime = 0,					\
0584:   		.stime = 0,					\
0585:   		.sum_exec_runtime = 0,				\
0586:   	}
0587:   
0588:   /*
0589:    * This is the atomic variant of task_cputime, which can be used for
0590:    * storing and updating task_cputime statistics without locking.
0591:    */
0592:   struct task_cputime_atomic {
0593:   	atomic64_t utime;
0594:   	atomic64_t stime;
0595:   	atomic64_t sum_exec_runtime;
0596:   };
0597:   
0598:   #define INIT_CPUTIME_ATOMIC \
0599:   	(struct task_cputime_atomic) {				\
0600:   		.utime = ATOMIC64_INIT(0),			\
0601:   		.stime = ATOMIC64_INIT(0),			\
0602:   		.sum_exec_runtime = ATOMIC64_INIT(0),		\
0603:   	}
0604:   
0605:   #define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
0606:   
0607:   /*
0608:    * Disable preemption until the scheduler is running -- use an unconditional
0609:    * value so that it also works on !PREEMPT_COUNT kernels.
0610:    *
0611:    * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
0612:    */
0613:   #define INIT_PREEMPT_COUNT	PREEMPT_OFFSET
0614:   
0615:   /*
0616:    * Initial preempt_count value; reflects the preempt_count schedule invariant
0617:    * which states that during context switches:
0618:    *
0619:    *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
0620:    *
0621:    * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
0622:    * Note: See finish_task_switch().
0623:    */
0624:   #define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
0625:   
0626:   /**
0627:    * struct thread_group_cputimer - thread group interval timer counts
0628:    * @cputime_atomic:	atomic thread group interval timers.
0629:    * @running:		true when there are timers running and
0630:    *			@cputime_atomic receives updates.
0631:    * @checking_timer:	true when a thread in the group is in the
0632:    *			process of checking for thread group timers.
0633:    *
0634:    * This structure contains the version of task_cputime, above, that is
0635:    * used for thread group CPU timer calculations.
0636:    */
0637:   struct thread_group_cputimer {
0638:   	struct task_cputime_atomic cputime_atomic;
0639:   	bool running;
0640:   	bool checking_timer;
0641:   };
0642:   
0643:   #include <linux/rwsem.h>
0644:   struct autogroup;
0645:   
0646:   /*
0647:    * NOTE! "signal_struct" does not have its own
0648:    * locking, because a shared signal_struct always
0649:    * implies a shared sighand_struct, so locking
0650:    * sighand_struct is always a proper superset of
0651:    * the locking of signal_struct.
0652:    */
0653:   struct signal_struct {
0654:   	atomic_t		sigcnt;
0655:   	atomic_t		live;
0656:   	int			nr_threads;
0657:   	struct list_head	thread_head;
0658:   
0659:   	wait_queue_head_t	wait_chldexit;	/* for wait4() */
0660:   
0661:   	/* current thread group signal load-balancing target: */
0662:   	struct task_struct	*curr_target;
0663:   
0664:   	/* shared signal handling: */
0665:   	struct sigpending	shared_pending;
0666:   
0667:   	/* thread group exit support */
0668:   	int			group_exit_code;
0669:   	/* overloaded:
0670:   	 * - notify group_exit_task when ->count is equal to notify_count
0671:   	 * - everyone except group_exit_task is stopped during signal delivery
0672:   	 *   of fatal signals, group_exit_task processes the signal.
0673:   	 */
0674:   	int			notify_count;
0675:   	struct task_struct	*group_exit_task;
0676:   
0677:   	/* thread group stop support, overloads group_exit_code too */
0678:   	int			group_stop_count;
0679:   	unsigned int		flags; /* see SIGNAL_* flags below */
0680:   
0681:   	/*
0682:   	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
0683:   	 * manager, to re-parent orphan (double-forking) child processes
0684:   	 * to this process instead of 'init'. The service manager is
0685:   	 * able to receive SIGCHLD signals and is able to investigate
0686:   	 * the process until it calls wait(). All children of this
0687:   	 * process will inherit a flag if they should look for a
0688:   	 * child_subreaper process at exit.
0689:   	 */
0690:   	unsigned int		is_child_subreaper:1;
0691:   	unsigned int		has_child_subreaper:1;
0692:   
0693:   	/* POSIX.1b Interval Timers */
0694:   	int			posix_timer_id;
0695:   	struct list_head	posix_timers;
0696:   
0697:   	/* ITIMER_REAL timer for the process */
0698:   	struct hrtimer real_timer;
0699:   	struct pid *leader_pid;
0700:   	ktime_t it_real_incr;
0701:   
0702:   	/*
0703:   	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
0704:   	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
0705:   	 * values are defined to 0 and 1 respectively
0706:   	 */
0707:   	struct cpu_itimer it[2];
0708:   
0709:   	/*
0710:   	 * Thread group totals for process CPU timers.
0711:   	 * See thread_group_cputimer(), et al, for details.
0712:   	 */
0713:   	struct thread_group_cputimer cputimer;
0714:   
0715:   	/* Earliest-expiration cache. */
0716:   	struct task_cputime cputime_expires;
0717:   
0718:   	struct list_head cpu_timers[3];
0719:   
0720:   	struct pid *tty_old_pgrp;
0721:   
0722:   	/* boolean value for session group leader */
0723:   	int leader;
0724:   
0725:   	struct tty_struct *tty; /* NULL if no tty */
0726:   
0727:   #ifdef CONFIG_SCHED_AUTOGROUP
0728:   	struct autogroup *autogroup;
0729:   #endif
0730:   	/*
0731:   	 * Cumulative resource counters for dead threads in the group,
0732:   	 * and for reaped dead child processes forked by this group.
0733:   	 * Live threads maintain their own counters and add to these
0734:   	 * in __exit_signal, except for the group leader.
0735:   	 */
0736:   	seqlock_t stats_lock;
0737:   	cputime_t utime, stime, cutime, cstime;
0738:   	cputime_t gtime;
0739:   	cputime_t cgtime;
0740:   	struct prev_cputime prev_cputime;
0741:   	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
0742:   	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
0743:   	unsigned long inblock, oublock, cinblock, coublock;
0744:   	unsigned long maxrss, cmaxrss;
0745:   	struct task_io_accounting ioac;
0746:   
0747:   	/*
0748:   	 * Cumulative ns of schedule CPU time fo dead threads in the
0749:   	 * group, not including a zombie group leader, (This only differs
0750:   	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
0751:   	 * other than jiffies.)
0752:   	 */
0753:   	unsigned long long sum_sched_runtime;
0754:   
0755:   	/*
0756:   	 * We don't bother to synchronize most readers of this at all,
0757:   	 * because there is no reader checking a limit that actually needs
0758:   	 * to get both rlim_cur and rlim_max atomically, and either one
0759:   	 * alone is a single word that can safely be read normally.
0760:   	 * getrlimit/setrlimit use task_lock(current->group_leader) to
0761:   	 * protect this instead of the siglock, because they really
0762:   	 * have no need to disable irqs.
0763:   	 */
0764:   	struct rlimit rlim[RLIM_NLIMITS];
0765:   
0766:   #ifdef CONFIG_BSD_PROCESS_ACCT
0767:   	struct pacct_struct pacct;	/* per-process accounting information */
0768:   #endif
0769:   #ifdef CONFIG_TASKSTATS
0770:   	struct taskstats *stats;
0771:   #endif
0772:   #ifdef CONFIG_AUDIT
0773:   	unsigned audit_tty;
0774:   	unsigned audit_tty_log_passwd;
0775:   	struct tty_audit_buf *tty_audit_buf;
0776:   #endif
0777:   
0778:   	oom_flags_t oom_flags;
0779:   	short oom_score_adj;		/* OOM kill score adjustment */
0780:   	short oom_score_adj_min;	/* OOM kill score adjustment min value.
0781:   					 * Only settable by CAP_SYS_RESOURCE. */
0782:   
0783:   	struct mutex cred_guard_mutex;	/* guard against foreign influences on
0784:   					 * credential calculations
0785:   					 * (notably. ptrace) */
0786:   };
0787:   
0788:   /*
0789:    * Bits in flags field of signal_struct.
0790:    */
0791:   #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
0792:   #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
0793:   #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
0794:   #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
0795:   /*
0796:    * Pending notifications to parent.
0797:    */
0798:   #define SIGNAL_CLD_STOPPED	0x00000010
0799:   #define SIGNAL_CLD_CONTINUED	0x00000020
0800:   #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
0801:   
0802:   #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
0803:   
0804:   #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
0805:   			  SIGNAL_STOP_CONTINUED)
0806:   
0807:   static inline void signal_set_stop_flags(struct signal_struct *sig,
0808:   					 unsigned int flags)
0809:   {
0810:   	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
0811:   	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
0812:   }
0813:   
0814:   /* If true, all threads except ->group_exit_task have pending SIGKILL */
0815:   static inline int signal_group_exit(const struct signal_struct *sig)
0816:   {
0817:   	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
0818:   		(sig->group_exit_task != NULL);
0819:   }
0820:   
0821:   /*
0822:    * Some day this will be a full-fledged user tracking system..
0823:    */
0824:   struct user_struct {
0825:   	atomic_t __count;	/* reference count */
0826:   	atomic_t processes;	/* How many processes does this user have? */
0827:   	atomic_t sigpending;	/* How many pending signals does this user have? */
0828:   #ifdef CONFIG_INOTIFY_USER
0829:   	atomic_t inotify_watches; /* How many inotify watches does this user have? */
0830:   	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
0831:   #endif
0832:   #ifdef CONFIG_FANOTIFY
0833:   	atomic_t fanotify_listeners;
0834:   #endif
0835:   #ifdef CONFIG_EPOLL
0836:   	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
0837:   #endif
0838:   #ifdef CONFIG_POSIX_MQUEUE
0839:   	/* protected by mq_lock	*/
0840:   	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
0841:   #endif
0842:   	unsigned long locked_shm; /* How many pages of mlocked shm ? */
0843:   	unsigned long unix_inflight;	/* How many files in flight in unix sockets */
0844:   	atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
0845:   
0846:   #ifdef CONFIG_KEYS
0847:   	struct key *uid_keyring;	/* UID specific keyring */
0848:   	struct key *session_keyring;	/* UID's default session keyring */
0849:   #endif
0850:   
0851:   	/* Hash table maintenance information */
0852:   	struct hlist_node uidhash_node;
0853:   	kuid_t uid;
0854:   
0855:   #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
0856:   	atomic_long_t locked_vm;
0857:   #endif
0858:   };
0859:   
0860:   extern int uids_sysfs_init(void);
0861:   
0862:   extern struct user_struct *find_user(kuid_t);
0863:   
0864:   extern struct user_struct root_user;
0865:   #define INIT_USER (&root_user)
0866:   
0867:   
0868:   struct backing_dev_info;
0869:   struct reclaim_state;
0870:   
0871:   #ifdef CONFIG_SCHED_INFO
0872:   struct sched_info {
0873:   	/* cumulative counters */
0874:   	unsigned long pcount;	      /* # of times run on this cpu */
0875:   	unsigned long long run_delay; /* time spent waiting on a runqueue */
0876:   
0877:   	/* timestamps */
0878:   	unsigned long long last_arrival,/* when we last ran on a cpu */
0879:   			   last_queued;	/* when we were last queued to run */
0880:   };
0881:   #endif /* CONFIG_SCHED_INFO */
0882:   
0883:   #ifdef CONFIG_TASK_DELAY_ACCT
0884:   struct task_delay_info {
0885:   	spinlock_t	lock;
0886:   	unsigned int	flags;	/* Private per-task flags */
0887:   
0888:   	/* For each stat XXX, add following, aligned appropriately
0889:   	 *
0890:   	 * struct timespec XXX_start, XXX_end;
0891:   	 * u64 XXX_delay;
0892:   	 * u32 XXX_count;
0893:   	 *
0894:   	 * Atomicity of updates to XXX_delay, XXX_count protected by
0895:   	 * single lock above (split into XXX_lock if contention is an issue).
0896:   	 */
0897:   
0898:   	/*
0899:   	 * XXX_count is incremented on every XXX operation, the delay
0900:   	 * associated with the operation is added to XXX_delay.
0901:   	 * XXX_delay contains the accumulated delay time in nanoseconds.
0902:   	 */
0903:   	u64 blkio_start;	/* Shared by blkio, swapin */
0904:   	u64 blkio_delay;	/* wait for sync block io completion */
0905:   	u64 swapin_delay;	/* wait for swapin block io completion */
0906:   	u32 blkio_count;	/* total count of the number of sync block */
0907:   				/* io operations performed */
0908:   	u32 swapin_count;	/* total count of the number of swapin block */
0909:   				/* io operations performed */
0910:   
0911:   	u64 freepages_start;
0912:   	u64 freepages_delay;	/* wait for memory reclaim */
0913:   	u32 freepages_count;	/* total count of memory reclaim */
0914:   };
0915:   #endif	/* CONFIG_TASK_DELAY_ACCT */
0916:   
0917:   static inline int sched_info_on(void)
0918:   {
0919:   #ifdef CONFIG_SCHEDSTATS
0920:   	return 1;
0921:   #elif defined(CONFIG_TASK_DELAY_ACCT)
0922:   	extern int delayacct_on;
0923:   	return delayacct_on;
0924:   #else
0925:   	return 0;
0926:   #endif
0927:   }
0928:   
0929:   enum cpu_idle_type {
0930:   	CPU_IDLE,
0931:   	CPU_NOT_IDLE,
0932:   	CPU_NEWLY_IDLE,
0933:   	CPU_MAX_IDLE_TYPES
0934:   };
0935:   
0936:   /*
0937:    * Increase resolution of cpu_capacity calculations
0938:    */
0939:   #define SCHED_CAPACITY_SHIFT	10
0940:   #define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT)
0941:   
0942:   /*
0943:    * Wake-queues are lists of tasks with a pending wakeup, whose
0944:    * callers have already marked the task as woken internally,
0945:    * and can thus carry on. A common use case is being able to
0946:    * do the wakeups once the corresponding user lock as been
0947:    * released.
0948:    *
0949:    * We hold reference to each task in the list across the wakeup,
0950:    * thus guaranteeing that the memory is still valid by the time
0951:    * the actual wakeups are performed in wake_up_q().
0952:    *
0953:    * One per task suffices, because there's never a need for a task to be
0954:    * in two wake queues simultaneously; it is forbidden to abandon a task
0955:    * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
0956:    * already in a wake queue, the wakeup will happen soon and the second
0957:    * waker can just skip it.
0958:    *
0959:    * The WAKE_Q macro declares and initializes the list head.
0960:    * wake_up_q() does NOT reinitialize the list; it's expected to be
0961:    * called near the end of a function, where the fact that the queue is
0962:    * not used again will be easy to see by inspection.
0963:    *
0964:    * Note that this can cause spurious wakeups. schedule() callers
0965:    * must ensure the call is done inside a loop, confirming that the
0966:    * wakeup condition has in fact occurred.
0967:    */
0968:   struct wake_q_node {
0969:   	struct wake_q_node *next;
0970:   };
0971:   
0972:   struct wake_q_head {
0973:   	struct wake_q_node *first;
0974:   	struct wake_q_node **lastp;
0975:   };
0976:   
0977:   #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
0978:   
0979:   #define WAKE_Q(name)					\
0980:   	struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
0981:   
0982:   extern void wake_q_add(struct wake_q_head *head,
0983:   		       struct task_struct *task);
0984:   extern void wake_up_q(struct wake_q_head *head);
0985:   
0986:   /*
0987:    * sched-domains (multiprocessor balancing) declarations:
0988:    */
0989:   #ifdef CONFIG_SMP
0990:   #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
0991:   #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
0992:   #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
0993:   #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
0994:   #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
0995:   #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
0996:   #define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu power */
0997:   #define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */
0998:   #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
0999:   #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
1000:   #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
1001:   #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
1002:   #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
1003:   #define SD_NUMA			0x4000	/* cross-node balancing */
1004:   
1005:   #ifdef CONFIG_SCHED_SMT
1006:   static inline int cpu_smt_flags(void)
1007:   {
1008:   	return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1009:   }
1010:   #endif
1011:   
1012:   #ifdef CONFIG_SCHED_MC
1013:   static inline int cpu_core_flags(void)
1014:   {
1015:   	return SD_SHARE_PKG_RESOURCES;
1016:   }
1017:   #endif
1018:   
1019:   #ifdef CONFIG_NUMA
1020:   static inline int cpu_numa_flags(void)
1021:   {
1022:   	return SD_NUMA;
1023:   }
1024:   #endif
1025:   
1026:   struct sched_domain_attr {
1027:   	int relax_domain_level;
1028:   };
1029:   
1030:   #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
1031:   	.relax_domain_level = -1,			\
1032:   }
1033:   
1034:   extern int sched_domain_level_max;
1035:   
1036:   struct sched_group;
1037:   
1038:   struct sched_domain {
1039:   	/* These fields must be setup */
1040:   	struct sched_domain *parent;	/* top domain must be null terminated */
1041:   	struct sched_domain *child;	/* bottom domain must be null terminated */
1042:   	struct sched_group *groups;	/* the balancing groups of the domain */
1043:   	unsigned long min_interval;	/* Minimum balance interval ms */
1044:   	unsigned long max_interval;	/* Maximum balance interval ms */
1045:   	unsigned int busy_factor;	/* less balancing by factor if busy */
1046:   	unsigned int imbalance_pct;	/* No balance until over watermark */
1047:   	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
1048:   	unsigned int busy_idx;
1049:   	unsigned int idle_idx;
1050:   	unsigned int newidle_idx;
1051:   	unsigned int wake_idx;
1052:   	unsigned int forkexec_idx;
1053:   	unsigned int smt_gain;
1054:   
1055:   	int nohz_idle;			/* NOHZ IDLE status */
1056:   	int flags;			/* See SD_* */
1057:   	int level;
1058:   
1059:   	/* Runtime fields. */
1060:   	unsigned long last_balance;	/* init to jiffies. units in jiffies */
1061:   	unsigned int balance_interval;	/* initialise to 1. units in ms. */
1062:   	unsigned int nr_balance_failed; /* initialise to 0 */
1063:   
1064:   	/* idle_balance() stats */
1065:   	u64 max_newidle_lb_cost;
1066:   	unsigned long next_decay_max_lb_cost;
1067:   
1068:   #ifdef CONFIG_SCHEDSTATS
1069:   	/* load_balance() stats */
1070:   	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1071:   	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1072:   	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1073:   	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1074:   	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1075:   	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1076:   	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1077:   	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1078:   
1079:   	/* Active load balancing */
1080:   	unsigned int alb_count;
1081:   	unsigned int alb_failed;
1082:   	unsigned int alb_pushed;
1083:   
1084:   	/* SD_BALANCE_EXEC stats */
1085:   	unsigned int sbe_count;
1086:   	unsigned int sbe_balanced;
1087:   	unsigned int sbe_pushed;
1088:   
1089:   	/* SD_BALANCE_FORK stats */
1090:   	unsigned int sbf_count;
1091:   	unsigned int sbf_balanced;
1092:   	unsigned int sbf_pushed;
1093:   
1094:   	/* try_to_wake_up() stats */
1095:   	unsigned int ttwu_wake_remote;
1096:   	unsigned int ttwu_move_affine;
1097:   	unsigned int ttwu_move_balance;
1098:   #endif
1099:   #ifdef CONFIG_SCHED_DEBUG
1100:   	char *name;
1101:   #endif
1102:   	union {
1103:   		void *private;		/* used during construction */
1104:   		struct rcu_head rcu;	/* used during destruction */
1105:   	};
1106:   
1107:   	unsigned int span_weight;
1108:   	/*
1109:   	 * Span of all CPUs in this domain.
1110:   	 *
1111:   	 * NOTE: this field is variable length. (Allocated dynamically
1112:   	 * by attaching extra space to the end of the structure,
1113:   	 * depending on how many CPUs the kernel has booted up with)
1114:   	 */
1115:   	unsigned long span[0];
1116:   };
1117:   
1118:   static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1119:   {
1120:   	return to_cpumask(sd->span);
1121:   }
1122:   
1123:   extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1124:   				    struct sched_domain_attr *dattr_new);
1125:   
1126:   /* Allocate an array of sched domains, for partition_sched_domains(). */
1127:   cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1128:   void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1129:   
1130:   bool cpus_share_cache(int this_cpu, int that_cpu);
1131:   
1132:   typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1133:   typedef int (*sched_domain_flags_f)(void);
1134:   
1135:   #define SDTL_OVERLAP	0x01
1136:   
1137:   struct sd_data {
1138:   	struct sched_domain **__percpu sd;
1139:   	struct sched_group **__percpu sg;
1140:   	struct sched_group_capacity **__percpu sgc;
1141:   };
1142:   
1143:   struct sched_domain_topology_level {
1144:   	sched_domain_mask_f mask;
1145:   	sched_domain_flags_f sd_flags;
1146:   	int		    flags;
1147:   	int		    numa_level;
1148:   	struct sd_data      data;
1149:   #ifdef CONFIG_SCHED_DEBUG
1150:   	char                *name;
1151:   #endif
1152:   };
1153:   
1154:   extern void set_sched_topology(struct sched_domain_topology_level *tl);
1155:   extern void wake_up_if_idle(int cpu);
1156:   
1157:   #ifdef CONFIG_SCHED_DEBUG
1158:   # define SD_INIT_NAME(type)		.name = #type
1159:   #else
1160:   # define SD_INIT_NAME(type)
1161:   #endif
1162:   
1163:   #else /* CONFIG_SMP */
1164:   
1165:   struct sched_domain_attr;
1166:   
1167:   static inline void
1168:   partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1169:   			struct sched_domain_attr *dattr_new)
1170:   {
1171:   }
1172:   
1173:   static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1174:   {
1175:   	return true;
1176:   }
1177:   
1178:   #endif	/* !CONFIG_SMP */
1179:   
1180:   
1181:   struct io_context;			/* See blkdev.h */
1182:   
1183:   
1184:   #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1185:   extern void prefetch_stack(struct task_struct *t);
1186:   #else
1187:   static inline void prefetch_stack(struct task_struct *t) { }
1188:   #endif
1189:   
1190:   struct audit_context;		/* See audit.c */
1191:   struct mempolicy;
1192:   struct pipe_inode_info;
1193:   struct uts_namespace;
1194:   
1195:   struct load_weight {
1196:   	unsigned long weight;
1197:   	u32 inv_weight;
1198:   };
1199:   
1200:   /*
1201:    * The load_avg/util_avg accumulates an infinite geometric series.
1202:    * 1) load_avg factors frequency scaling into the amount of time that a
1203:    * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1204:    * aggregated such weights of all runnable and blocked sched_entities.
1205:    * 2) util_avg factors frequency and cpu scaling into the amount of time
1206:    * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1207:    * For cfs_rq, it is the aggregated such times of all runnable and
1208:    * blocked sched_entities.
1209:    * The 64 bit load_sum can:
1210:    * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1211:    * the highest weight (=88761) always runnable, we should not overflow
1212:    * 2) for entity, support any load.weight always runnable
1213:    */
1214:   struct sched_avg {
1215:   	u64 last_update_time, load_sum;
1216:   	u32 util_sum, period_contrib;
1217:   	unsigned long load_avg, util_avg;
1218:   };
1219:   
1220:   #ifdef CONFIG_SCHEDSTATS
1221:   struct sched_statistics {
1222:   	u64			wait_start;
1223:   	u64			wait_max;
1224:   	u64			wait_count;
1225:   	u64			wait_sum;
1226:   	u64			iowait_count;
1227:   	u64			iowait_sum;
1228:   
1229:   	u64			sleep_start;
1230:   	u64			sleep_max;
1231:   	s64			sum_sleep_runtime;
1232:   
1233:   	u64			block_start;
1234:   	u64			block_max;
1235:   	u64			exec_max;
1236:   	u64			slice_max;
1237:   
1238:   	u64			nr_migrations_cold;
1239:   	u64			nr_failed_migrations_affine;
1240:   	u64			nr_failed_migrations_running;
1241:   	u64			nr_failed_migrations_hot;
1242:   	u64			nr_forced_migrations;
1243:   
1244:   	u64			nr_wakeups;
1245:   	u64			nr_wakeups_sync;
1246:   	u64			nr_wakeups_migrate;
1247:   	u64			nr_wakeups_local;
1248:   	u64			nr_wakeups_remote;
1249:   	u64			nr_wakeups_affine;
1250:   	u64			nr_wakeups_affine_attempts;
1251:   	u64			nr_wakeups_passive;
1252:   	u64			nr_wakeups_idle;
1253:   };
1254:   #endif
1255:   
1256:   struct sched_entity {
1257:   	struct load_weight	load;		/* for load-balancing */
1258:   	struct rb_node		run_node;
1259:   	struct list_head	group_node;
1260:   	unsigned int		on_rq;
1261:   
1262:   	u64			exec_start;
1263:   	u64			sum_exec_runtime;
1264:   	u64			vruntime;
1265:   	u64			prev_sum_exec_runtime;
1266:   
1267:   	u64			nr_migrations;
1268:   
1269:   #ifdef CONFIG_SCHEDSTATS
1270:   	struct sched_statistics statistics;
1271:   #endif
1272:   
1273:   #ifdef CONFIG_FAIR_GROUP_SCHED
1274:   	int			depth;
1275:   	struct sched_entity	*parent;
1276:   	/* rq on which this entity is (to be) queued: */
1277:   	struct cfs_rq		*cfs_rq;
1278:   	/* rq "owned" by this entity/group: */
1279:   	struct cfs_rq		*my_q;
1280:   #endif
1281:   
1282:   #ifdef CONFIG_SMP
1283:   	/* Per entity load average tracking */
1284:   	struct sched_avg	avg;
1285:   #endif
1286:   };
1287:   
1288:   struct sched_rt_entity {
1289:   	struct list_head run_list;
1290:   	unsigned long timeout;
1291:   	unsigned long watchdog_stamp;
1292:   	unsigned int time_slice;
1293:   
1294:   	struct sched_rt_entity *back;
1295:   #ifdef CONFIG_RT_GROUP_SCHED
1296:   	struct sched_rt_entity	*parent;
1297:   	/* rq on which this entity is (to be) queued: */
1298:   	struct rt_rq		*rt_rq;
1299:   	/* rq "owned" by this entity/group: */
1300:   	struct rt_rq		*my_q;
1301:   #endif
1302:   };
1303:   
1304:   struct sched_dl_entity {
1305:   	struct rb_node	rb_node;
1306:   
1307:   	/*
1308:   	 * Original scheduling parameters. Copied here from sched_attr
1309:   	 * during sched_setattr(), they will remain the same until
1310:   	 * the next sched_setattr().
1311:   	 */
1312:   	u64 dl_runtime;		/* maximum runtime for each instance	*/
1313:   	u64 dl_deadline;	/* relative deadline of each instance	*/
1314:   	u64 dl_period;		/* separation of two instances (period) */
1315:   	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1316:   	u64 dl_density;		/* dl_runtime / dl_deadline		*/
1317:   
1318:   	/*
1319:   	 * Actual scheduling parameters. Initialized with the values above,
1320:   	 * they are continously updated during task execution. Note that
1321:   	 * the remaining runtime could be < 0 in case we are in overrun.
1322:   	 */
1323:   	s64 runtime;		/* remaining runtime for this instance	*/
1324:   	u64 deadline;		/* absolute deadline for this instance	*/
1325:   	unsigned int flags;	/* specifying the scheduler behaviour	*/
1326:   
1327:   	/*
1328:   	 * Some bool flags:
1329:   	 *
1330:   	 * @dl_throttled tells if we exhausted the runtime. If so, the
1331:   	 * task has to wait for a replenishment to be performed at the
1332:   	 * next firing of dl_timer.
1333:   	 *
1334:   	 * @dl_new tells if a new instance arrived. If so we must
1335:   	 * start executing it with full runtime and reset its absolute
1336:   	 * deadline;
1337:   	 *
1338:   	 * @dl_boosted tells if we are boosted due to DI. If so we are
1339:   	 * outside bandwidth enforcement mechanism (but only until we
1340:   	 * exit the critical section);
1341:   	 *
1342:   	 * @dl_yielded tells if task gave up the cpu before consuming
1343:   	 * all its available runtime during the last job.
1344:   	 */
1345:   	int dl_throttled, dl_new, dl_boosted, dl_yielded;
1346:   
1347:   	/*
1348:   	 * Bandwidth enforcement timer. Each -deadline task has its
1349:   	 * own bandwidth to be enforced, thus we need one timer per task.
1350:   	 */
1351:   	struct hrtimer dl_timer;
1352:   };
1353:   
1354:   union rcu_special {
1355:   	struct {
1356:   		u8 blocked;
1357:   		u8 need_qs;
1358:   		u8 exp_need_qs;
1359:   		u8 pad;	/* Otherwise the compiler can store garbage here. */
1360:   	} b; /* Bits. */
1361:   	u32 s; /* Set of bits. */
1362:   };
1363:   struct rcu_node;
1364:   
1365:   enum perf_event_task_context {
1366:   	perf_invalid_context = -1,
1367:   	perf_hw_context = 0,
1368:   	perf_sw_context,
1369:   	perf_nr_task_contexts,
1370:   };
1371:   
1372:   /* Track pages that require TLB flushes */
1373:   struct tlbflush_unmap_batch {
1374:   	/*
1375:   	 * Each bit set is a CPU that potentially has a TLB entry for one of
1376:   	 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1377:   	 */
1378:   	struct cpumask cpumask;
1379:   
1380:   	/* True if any bit in cpumask is set */
1381:   	bool flush_required;
1382:   
1383:   	/*
1384:   	 * If true then the PTE was dirty when unmapped. The entry must be
1385:   	 * flushed before IO is initiated or a stale TLB entry potentially
1386:   	 * allows an update without redirtying the page.
1387:   	 */
1388:   	bool writable;
1389:   };
1390:   
1391:   struct task_struct {
1392:   	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1393:   	void *stack;
1394:   	atomic_t usage;
1395:   	unsigned int flags;	/* per process flags, defined below */
1396:   	unsigned int ptrace;
1397:   
1398:   #ifdef CONFIG_SMP
1399:   	struct llist_node wake_entry;
1400:   	int on_cpu;
1401:   	unsigned int wakee_flips;
1402:   	unsigned long wakee_flip_decay_ts;
1403:   	struct task_struct *last_wakee;
1404:   
1405:   	int wake_cpu;
1406:   #endif
1407:   	int on_rq;
1408:   
1409:   	int prio, static_prio, normal_prio;
1410:   	unsigned int rt_priority;
1411:   	const struct sched_class *sched_class;
1412:   	struct sched_entity se;
1413:   	struct sched_rt_entity rt;
1414:   #ifdef CONFIG_CGROUP_SCHED
1415:   	struct task_group *sched_task_group;
1416:   #endif
1417:   	struct sched_dl_entity dl;
1418:   
1419:   #ifdef CONFIG_PREEMPT_NOTIFIERS
1420:   	/* list of struct preempt_notifier: */
1421:   	struct hlist_head preempt_notifiers;
1422:   #endif
1423:   
1424:   #ifdef CONFIG_BLK_DEV_IO_TRACE
1425:   	unsigned int btrace_seq;
1426:   #endif
1427:   
1428:   	unsigned int policy;
1429:   	int nr_cpus_allowed;
1430:   	cpumask_t cpus_allowed;
1431:   
1432:   #ifdef CONFIG_PREEMPT_RCU
1433:   	int rcu_read_lock_nesting;
1434:   	union rcu_special rcu_read_unlock_special;
1435:   	struct list_head rcu_node_entry;
1436:   	struct rcu_node *rcu_blocked_node;
1437:   #endif /* #ifdef CONFIG_PREEMPT_RCU */
1438:   #ifdef CONFIG_TASKS_RCU
1439:   	unsigned long rcu_tasks_nvcsw;
1440:   	bool rcu_tasks_holdout;
1441:   	struct list_head rcu_tasks_holdout_list;
1442:   	int rcu_tasks_idle_cpu;
1443:   #endif /* #ifdef CONFIG_TASKS_RCU */
1444:   
1445:   #ifdef CONFIG_SCHED_INFO
1446:   	struct sched_info sched_info;
1447:   #endif
1448:   
1449:   	struct list_head tasks;
1450:   #ifdef CONFIG_SMP
1451:   	struct plist_node pushable_tasks;
1452:   	struct rb_node pushable_dl_tasks;
1453:   #endif
1454:   
1455:   	struct mm_struct *mm, *active_mm;
1456:   	/* per-thread vma caching */
1457:   	u32 vmacache_seqnum;
1458:   	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1459:   #if defined(SPLIT_RSS_COUNTING)
1460:   	struct task_rss_stat	rss_stat;
1461:   #endif
1462:   /* task state */
1463:   	int exit_state;
1464:   	int exit_code, exit_signal;
1465:   	int pdeath_signal;  /*  The signal sent when the parent dies  */
1466:   	unsigned long jobctl;	/* JOBCTL_*, siglock protected */
1467:   
1468:   	/* Used for emulating ABI behavior of previous Linux versions */
1469:   	unsigned int personality;
1470:   
1471:   	/* scheduler bits, serialized by scheduler locks */
1472:   	unsigned sched_reset_on_fork:1;
1473:   	unsigned sched_contributes_to_load:1;
1474:   	unsigned sched_migrated:1;
1475:   	unsigned :0; /* force alignment to the next boundary */
1476:   
1477:   	/* unserialized, strictly 'current' */
1478:   	unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1479:   	unsigned in_iowait:1;
1480:   #ifdef CONFIG_MEMCG
1481:   	unsigned memcg_may_oom:1;
1482:   #endif
1483:   #ifdef CONFIG_MEMCG_KMEM
1484:   	unsigned memcg_kmem_skip_account:1;
1485:   #endif
1486:   #ifdef CONFIG_COMPAT_BRK
1487:   	unsigned brk_randomized:1;
1488:   #endif
1489:   #ifdef CONFIG_CGROUPS
1490:   	/* disallow userland-initiated cgroup migration */
1491:   	unsigned no_cgroup_migration:1;
1492:   #endif
1493:   
1494:   	unsigned long atomic_flags; /* Flags needing atomic access. */
1495:   
1496:   	struct restart_block restart_block;
1497:   
1498:   	pid_t pid;
1499:   	pid_t tgid;
1500:   
1501:   #ifdef CONFIG_CC_STACKPROTECTOR
1502:   	/* Canary value for the -fstack-protector gcc feature */
1503:   	unsigned long stack_canary;
1504:   #endif
1505:   	/*
1506:   	 * pointers to (original) parent process, youngest child, younger sibling,
1507:   	 * older sibling, respectively.  (p->father can be replaced with
1508:   	 * p->real_parent->pid)
1509:   	 */
1510:   	struct task_struct __rcu *real_parent; /* real parent process */
1511:   	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1512:   	/*
1513:   	 * children/sibling forms the list of my natural children
1514:   	 */
1515:   	struct list_head children;	/* list of my children */
1516:   	struct list_head sibling;	/* linkage in my parent's children list */
1517:   	struct task_struct *group_leader;	/* threadgroup leader */
1518:   
1519:   	/*
1520:   	 * ptraced is the list of tasks this task is using ptrace on.
1521:   	 * This includes both natural children and PTRACE_ATTACH targets.
1522:   	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1523:   	 */
1524:   	struct list_head ptraced;
1525:   	struct list_head ptrace_entry;
1526:   
1527:   	/* PID/PID hash table linkage. */
1528:   	struct pid_link pids[PIDTYPE_MAX];
1529:   	struct list_head thread_group;
1530:   	struct list_head thread_node;
1531:   
1532:   	struct completion *vfork_done;		/* for vfork() */
1533:   	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1534:   	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1535:   
1536:   	cputime_t utime, stime, utimescaled, stimescaled;
1537:   	cputime_t gtime;
1538:   	struct prev_cputime prev_cputime;
1539:   #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1540:   	seqlock_t vtime_seqlock;
1541:   	unsigned long long vtime_snap;
1542:   	enum {
1543:   		VTIME_SLEEPING = 0,
1544:   		VTIME_USER,
1545:   		VTIME_SYS,
1546:   	} vtime_snap_whence;
1547:   #endif
1548:   	unsigned long nvcsw, nivcsw; /* context switch counts */
1549:   	u64 start_time;		/* monotonic time in nsec */
1550:   	u64 real_start_time;	/* boot based time in nsec */
1551:   /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1552:   	unsigned long min_flt, maj_flt;
1553:   
1554:   	struct task_cputime cputime_expires;
1555:   	struct list_head cpu_timers[3];
1556:   
1557:   /* process credentials */
1558:   	const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1559:   	const struct cred __rcu *real_cred; /* objective and real subjective task
1560:   					 * credentials (COW) */
1561:   	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1562:   					 * credentials (COW) */
1563:   	char comm[TASK_COMM_LEN]; /* executable name excluding path
1564:   				     - access with [gs]et_task_comm (which lock
1565:   				       it with task_lock())
1566:   				     - initialized normally by setup_new_exec */
1567:   /* file system info */
1568:   	struct nameidata *nameidata;
1569:   #ifdef CONFIG_SYSVIPC
1570:   /* ipc stuff */
1571:   	struct sysv_sem sysvsem;
1572:   	struct sysv_shm sysvshm;
1573:   #endif
1574:   #ifdef CONFIG_DETECT_HUNG_TASK
1575:   /* hung task detection */
1576:   	unsigned long last_switch_count;
1577:   #endif
1578:   /* filesystem information */
1579:   	struct fs_struct *fs;
1580:   /* open file information */
1581:   	struct files_struct *files;
1582:   /* namespaces */
1583:   	struct nsproxy *nsproxy;
1584:   /* signal handlers */
1585:   	struct signal_struct *signal;
1586:   	struct sighand_struct *sighand;
1587:   
1588:   	sigset_t blocked, real_blocked;
1589:   	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1590:   	struct sigpending pending;
1591:   
1592:   	unsigned long sas_ss_sp;
1593:   	size_t sas_ss_size;
1594:   
1595:   	struct callback_head *task_works;
1596:   
1597:   	struct audit_context *audit_context;
1598:   #ifdef CONFIG_AUDITSYSCALL
1599:   	kuid_t loginuid;
1600:   	unsigned int sessionid;
1601:   #endif
1602:   	struct seccomp seccomp;
1603:   
1604:   /* Thread group tracking */
1605:      	u32 parent_exec_id;
1606:      	u32 self_exec_id;
1607:   /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1608:    * mempolicy */
1609:   	spinlock_t alloc_lock;
1610:   
1611:   	/* Protection of the PI data structures: */
1612:   	raw_spinlock_t pi_lock;
1613:   
1614:   	struct wake_q_node wake_q;
1615:   
1616:   #ifdef CONFIG_RT_MUTEXES
1617:   	/* PI waiters blocked on a rt_mutex held by this task */
1618:   	struct rb_root pi_waiters;
1619:   	struct rb_node *pi_waiters_leftmost;
1620:   	/* Deadlock detection and priority inheritance handling */
1621:   	struct rt_mutex_waiter *pi_blocked_on;
1622:   #endif
1623:   
1624:   #ifdef CONFIG_DEBUG_MUTEXES
1625:   	/* mutex deadlock detection */
1626:   	struct mutex_waiter *blocked_on;
1627:   #endif
1628:   #ifdef CONFIG_TRACE_IRQFLAGS
1629:   	unsigned int irq_events;
1630:   	unsigned long hardirq_enable_ip;
1631:   	unsigned long hardirq_disable_ip;
1632:   	unsigned int hardirq_enable_event;
1633:   	unsigned int hardirq_disable_event;
1634:   	int hardirqs_enabled;
1635:   	int hardirq_context;
1636:   	unsigned long softirq_disable_ip;
1637:   	unsigned long softirq_enable_ip;
1638:   	unsigned int softirq_disable_event;
1639:   	unsigned int softirq_enable_event;
1640:   	int softirqs_enabled;
1641:   	int softirq_context;
1642:   #endif
1643:   #ifdef CONFIG_LOCKDEP
1644:   # define MAX_LOCK_DEPTH 48UL
1645:   	u64 curr_chain_key;
1646:   	int lockdep_depth;
1647:   	unsigned int lockdep_recursion;
1648:   	struct held_lock held_locks[MAX_LOCK_DEPTH];
1649:   	gfp_t lockdep_reclaim_gfp;
1650:   #endif
1651:   
1652:   /* journalling filesystem info */
1653:   	void *journal_info;
1654:   
1655:   /* stacked block device info */
1656:   	struct bio_list *bio_list;
1657:   
1658:   #ifdef CONFIG_BLOCK
1659:   /* stack plugging */
1660:   	struct blk_plug *plug;
1661:   #endif
1662:   
1663:   /* VM state */
1664:   	struct reclaim_state *reclaim_state;
1665:   
1666:   	struct backing_dev_info *backing_dev_info;
1667:   
1668:   	struct io_context *io_context;
1669:   
1670:   	unsigned long ptrace_message;
1671:   	siginfo_t *last_siginfo; /* For ptrace use.  */
1672:   	struct task_io_accounting ioac;
1673:   #if defined(CONFIG_TASK_XACCT)
1674:   	u64 acct_rss_mem1;	/* accumulated rss usage */
1675:   	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1676:   	cputime_t acct_timexpd;	/* stime + utime since last update */
1677:   #endif
1678:   #ifdef CONFIG_CPUSETS
1679:   	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1680:   	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1681:   	int cpuset_mem_spread_rotor;
1682:   	int cpuset_slab_spread_rotor;
1683:   #endif
1684:   #ifdef CONFIG_CGROUPS
1685:   	/* Control Group info protected by css_set_lock */
1686:   	struct css_set __rcu *cgroups;
1687:   	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1688:   	struct list_head cg_list;
1689:   #endif
1690:   #ifdef CONFIG_FUTEX
1691:   	struct robust_list_head __user *robust_list;
1692:   #ifdef CONFIG_COMPAT
1693:   	struct compat_robust_list_head __user *compat_robust_list;
1694:   #endif
1695:   	struct list_head pi_state_list;
1696:   	struct futex_pi_state *pi_state_cache;
1697:   #endif
1698:   #ifdef CONFIG_PERF_EVENTS
1699:   	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1700:   	struct mutex perf_event_mutex;
1701:   	struct list_head perf_event_list;
1702:   #endif
1703:   #ifdef CONFIG_DEBUG_PREEMPT
1704:   	unsigned long preempt_disable_ip;
1705:   #endif
1706:   #ifdef CONFIG_NUMA
1707:   	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1708:   	short il_next;
1709:   	short pref_node_fork;
1710:   #endif
1711:   #ifdef CONFIG_NUMA_BALANCING
1712:   	int numa_scan_seq;
1713:   	unsigned int numa_scan_period;
1714:   	unsigned int numa_scan_period_max;
1715:   	int numa_preferred_nid;
1716:   	unsigned long numa_migrate_retry;
1717:   	u64 node_stamp;			/* migration stamp  */
1718:   	u64 last_task_numa_placement;
1719:   	u64 last_sum_exec_runtime;
1720:   	struct callback_head numa_work;
1721:   
1722:   	struct list_head numa_entry;
1723:   	struct numa_group *numa_group;
1724:   
1725:   	/*
1726:   	 * numa_faults is an array split into four regions:
1727:   	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1728:   	 * in this precise order.
1729:   	 *
1730:   	 * faults_memory: Exponential decaying average of faults on a per-node
1731:   	 * basis. Scheduling placement decisions are made based on these
1732:   	 * counts. The values remain static for the duration of a PTE scan.
1733:   	 * faults_cpu: Track the nodes the process was running on when a NUMA
1734:   	 * hinting fault was incurred.
1735:   	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1736:   	 * during the current scan window. When the scan completes, the counts
1737:   	 * in faults_memory and faults_cpu decay and these values are copied.
1738:   	 */
1739:   	unsigned long *numa_faults;
1740:   	unsigned long total_numa_faults;
1741:   
1742:   	/*
1743:   	 * numa_faults_locality tracks if faults recorded during the last
1744:   	 * scan window were remote/local or failed to migrate. The task scan
1745:   	 * period is adapted based on the locality of the faults with different
1746:   	 * weights depending on whether they were shared or private faults
1747:   	 */
1748:   	unsigned long numa_faults_locality[3];
1749:   
1750:   	unsigned long numa_pages_migrated;
1751:   #endif /* CONFIG_NUMA_BALANCING */
1752:   
1753:   #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1754:   	struct tlbflush_unmap_batch tlb_ubc;
1755:   #endif
1756:   
1757:   	struct rcu_head rcu;
1758:   
1759:   	/*
1760:   	 * cache last used pipe for splice
1761:   	 */
1762:   	struct pipe_inode_info *splice_pipe;
1763:   
1764:   	struct page_frag task_frag;
1765:   
1766:   #ifdef	CONFIG_TASK_DELAY_ACCT
1767:   	struct task_delay_info *delays;
1768:   #endif
1769:   #ifdef CONFIG_FAULT_INJECTION
1770:   	int make_it_fail;
1771:   #endif
1772:   	/*
1773:   	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1774:   	 * balance_dirty_pages() for some dirty throttling pause
1775:   	 */
1776:   	int nr_dirtied;
1777:   	int nr_dirtied_pause;
1778:   	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1779:   
1780:   #ifdef CONFIG_LATENCYTOP
1781:   	int latency_record_count;
1782:   	struct latency_record latency_record[LT_SAVECOUNT];
1783:   #endif
1784:   	/*
1785:   	 * time slack values; these are used to round up poll() and
1786:   	 * select() etc timeout values. These are in nanoseconds.
1787:   	 */
1788:   	unsigned long timer_slack_ns;
1789:   	unsigned long default_timer_slack_ns;
1790:   
1791:   #ifdef CONFIG_KASAN
1792:   	unsigned int kasan_depth;
1793:   #endif
1794:   #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1795:   	/* Index of current stored address in ret_stack */
1796:   	int curr_ret_stack;
1797:   	/* Stack of return addresses for return function tracing */
1798:   	struct ftrace_ret_stack	*ret_stack;
1799:   	/* time stamp for last schedule */
1800:   	unsigned long long ftrace_timestamp;
1801:   	/*
1802:   	 * Number of functions that haven't been traced
1803:   	 * because of depth overrun.
1804:   	 */
1805:   	atomic_t trace_overrun;
1806:   	/* Pause for the tracing */
1807:   	atomic_t tracing_graph_pause;
1808:   #endif
1809:   #ifdef CONFIG_TRACING
1810:   	/* state flags for use by tracers */
1811:   	unsigned long trace;
1812:   	/* bitmask and counter of trace recursion */
1813:   	unsigned long trace_recursion;
1814:   #endif /* CONFIG_TRACING */
1815:   #ifdef CONFIG_MEMCG
1816:   	struct mem_cgroup *memcg_in_oom;
1817:   	gfp_t memcg_oom_gfp_mask;
1818:   	int memcg_oom_order;
1819:   
1820:   	/* number of pages to reclaim on returning to userland */
1821:   	unsigned int memcg_nr_pages_over_high;
1822:   #endif
1823:   #ifdef CONFIG_UPROBES
1824:   	struct uprobe_task *utask;
1825:   #endif
1826:   #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1827:   	unsigned int	sequential_io;
1828:   	unsigned int	sequential_io_avg;
1829:   #endif
1830:   #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1831:   	unsigned long	task_state_change;
1832:   #endif
1833:   	int pagefault_disabled;
1834:   /* CPU-specific state of this task */
1835:   	struct thread_struct thread;
1836:   /*
1837:    * WARNING: on x86, 'thread_struct' contains a variable-sized
1838:    * structure.  It *MUST* be at the end of 'task_struct'.
1839:    *
1840:    * Do not put anything below here!
1841:    */
1842:   };
1843:   
1844:   #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1845:   extern int arch_task_struct_size __read_mostly;
1846:   #else
1847:   # define arch_task_struct_size (sizeof(struct task_struct))
1848:   #endif
1849:   
1850:   /* Future-safe accessor for struct task_struct's cpus_allowed. */
1851:   #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1852:   
1853:   #define TNF_MIGRATED	0x01
1854:   #define TNF_NO_GROUP	0x02
1855:   #define TNF_SHARED	0x04
1856:   #define TNF_FAULT_LOCAL	0x08
1857:   #define TNF_MIGRATE_FAIL 0x10
1858:   
1859:   #ifdef CONFIG_NUMA_BALANCING
1860:   extern void task_numa_fault(int last_node, int node, int pages, int flags);
1861:   extern pid_t task_numa_group_id(struct task_struct *p);
1862:   extern void set_numabalancing_state(bool enabled);
1863:   extern void task_numa_free(struct task_struct *p);
1864:   extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1865:   					int src_nid, int dst_cpu);
1866:   #else
1867:   static inline void task_numa_fault(int last_node, int node, int pages,
1868:   				   int flags)
1869:   {
1870:   }
1871:   static inline pid_t task_numa_group_id(struct task_struct *p)
1872:   {
1873:   	return 0;
1874:   }
1875:   static inline void set_numabalancing_state(bool enabled)
1876:   {
1877:   }
1878:   static inline void task_numa_free(struct task_struct *p)
1879:   {
1880:   }
1881:   static inline bool should_numa_migrate_memory(struct task_struct *p,
1882:   				struct page *page, int src_nid, int dst_cpu)
1883:   {
1884:   	return true;
1885:   }
1886:   #endif
1887:   
1888:   static inline struct pid *task_pid(struct task_struct *task)
1889:   {
1890:   	return task->pids[PIDTYPE_PID].pid;
1891:   }
1892:   
1893:   static inline struct pid *task_tgid(struct task_struct *task)
1894:   {
1895:   	return task->group_leader->pids[PIDTYPE_PID].pid;
1896:   }
1897:   
1898:   /*
1899:    * Without tasklist or rcu lock it is not safe to dereference
1900:    * the result of task_pgrp/task_session even if task == current,
1901:    * we can race with another thread doing sys_setsid/sys_setpgid.
1902:    */
1903:   static inline struct pid *task_pgrp(struct task_struct *task)
1904:   {
1905:   	return task->group_leader->pids[PIDTYPE_PGID].pid;
1906:   }
1907:   
1908:   static inline struct pid *task_session(struct task_struct *task)
1909:   {
1910:   	return task->group_leader->pids[PIDTYPE_SID].pid;
1911:   }
1912:   
1913:   struct pid_namespace;
1914:   
1915:   /*
1916:    * the helpers to get the task's different pids as they are seen
1917:    * from various namespaces
1918:    *
1919:    * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1920:    * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1921:    *                     current.
1922:    * task_xid_nr_ns()  : id seen from the ns specified;
1923:    *
1924:    * set_task_vxid()   : assigns a virtual id to a task;
1925:    *
1926:    * see also pid_nr() etc in include/linux/pid.h
1927:    */
1928:   pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1929:   			struct pid_namespace *ns);
1930:   
1931:   static inline pid_t task_pid_nr(struct task_struct *tsk)
1932:   {
1933:   	return tsk->pid;
1934:   }
1935:   
1936:   static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1937:   					struct pid_namespace *ns)
1938:   {
1939:   	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1940:   }
1941:   
1942:   static inline pid_t task_pid_vnr(struct task_struct *tsk)
1943:   {
1944:   	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1945:   }
1946:   
1947:   
1948:   static inline pid_t task_tgid_nr(struct task_struct *tsk)
1949:   {
1950:   	return tsk->tgid;
1951:   }
1952:   
1953:   
1954:   static inline int pid_alive(const struct task_struct *p);
1955:   
1956:   static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1957:   					struct pid_namespace *ns)
1958:   {
1959:   	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1960:   }
1961:   
1962:   static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1963:   {
1964:   	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1965:   }
1966:   
1967:   
1968:   static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1969:   					struct pid_namespace *ns)
1970:   {
1971:   	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1972:   }
1973:   
1974:   static inline pid_t task_session_vnr(struct task_struct *tsk)
1975:   {
1976:   	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1977:   }
1978:   
1979:   static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1980:   {
1981:   	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1982:   }
1983:   
1984:   static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1985:   {
1986:   	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1987:   }
1988:   
1989:   static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1990:   {
1991:   	pid_t pid = 0;
1992:   
1993:   	rcu_read_lock();
1994:   	if (pid_alive(tsk))
1995:   		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1996:   	rcu_read_unlock();
1997:   
1998:   	return pid;
1999:   }
2000:   
2001:   static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2002:   {
2003:   	return task_ppid_nr_ns(tsk, &init_pid_ns);
2004:   }
2005:   
2006:   /* obsolete, do not use */
2007:   static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2008:   {
2009:   	return task_pgrp_nr_ns(tsk, &init_pid_ns);
2010:   }
2011:   
2012:   /**
2013:    * pid_alive - check that a task structure is not stale
2014:    * @p: Task structure to be checked.
2015:    *
2016:    * Test if a process is not yet dead (at most zombie state)
2017:    * If pid_alive fails, then pointers within the task structure
2018:    * can be stale and must not be dereferenced.
2019:    *
2020:    * Return: 1 if the process is alive. 0 otherwise.
2021:    */
2022:   static inline int pid_alive(const struct task_struct *p)
2023:   {
2024:   	return p->pids[PIDTYPE_PID].pid != NULL;
2025:   }
2026:   
2027:   /**
2028:    * is_global_init - check if a task structure is init. Since init
2029:    * is free to have sub-threads we need to check tgid.
2030:    * @tsk: Task structure to be checked.
2031:    *
2032:    * Check if a task structure is the first user space task the kernel created.
2033:    *
2034:    * Return: 1 if the task structure is init. 0 otherwise.
2035:    */
2036:   static inline int is_global_init(struct task_struct *tsk)
2037:   {
2038:   	return task_tgid_nr(tsk) == 1;
2039:   }
2040:   
2041:   extern struct pid *cad_pid;
2042:   
2043:   extern void free_task(struct task_struct *tsk);
2044:   #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2045:   
2046:   extern void __put_task_struct(struct task_struct *t);
2047:   
2048:   static inline void put_task_struct(struct task_struct *t)
2049:   {
2050:   	if (atomic_dec_and_test(&t->usage))
2051:   		__put_task_struct(t);
2052:   }
2053:   
2054:   #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2055:   extern void task_cputime(struct task_struct *t,
2056:   			 cputime_t *utime, cputime_t *stime);
2057:   extern void task_cputime_scaled(struct task_struct *t,
2058:   				cputime_t *utimescaled, cputime_t *stimescaled);
2059:   extern cputime_t task_gtime(struct task_struct *t);
2060:   #else
2061:   static inline void task_cputime(struct task_struct *t,
2062:   				cputime_t *utime, cputime_t *stime)
2063:   {
2064:   	if (utime)
2065:   		*utime = t->utime;
2066:   	if (stime)
2067:   		*stime = t->stime;
2068:   }
2069:   
2070:   static inline void task_cputime_scaled(struct task_struct *t,
2071:   				       cputime_t *utimescaled,
2072:   				       cputime_t *stimescaled)
2073:   {
2074:   	if (utimescaled)
2075:   		*utimescaled = t->utimescaled;
2076:   	if (stimescaled)
2077:   		*stimescaled = t->stimescaled;
2078:   }
2079:   
2080:   static inline cputime_t task_gtime(struct task_struct *t)
2081:   {
2082:   	return t->gtime;
2083:   }
2084:   #endif
2085:   extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2086:   extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2087:   
2088:   /*
2089:    * Per process flags
2090:    */
2091:   #define PF_EXITING	0x00000004	/* getting shut down */
2092:   #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
2093:   #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
2094:   #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
2095:   #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
2096:   #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2097:   #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
2098:   #define PF_DUMPCORE	0x00000200	/* dumped core */
2099:   #define PF_SIGNALED	0x00000400	/* killed by a signal */
2100:   #define PF_MEMALLOC	0x00000800	/* Allocating memory */
2101:   #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
2102:   #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
2103:   #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
2104:   #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
2105:   #define PF_FROZEN	0x00010000	/* frozen for system suspend */
2106:   #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
2107:   #define PF_KSWAPD	0x00040000	/* I am kswapd */
2108:   #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
2109:   #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
2110:   #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
2111:   #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
2112:   #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
2113:   #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
2114:   #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2115:   #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
2116:   #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
2117:   #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2118:   
2119:   /*
2120:    * Only the _current_ task can read/write to tsk->flags, but other
2121:    * tasks can access tsk->flags in readonly mode for example
2122:    * with tsk_used_math (like during threaded core dumping).
2123:    * There is however an exception to this rule during ptrace
2124:    * or during fork: the ptracer task is allowed to write to the
2125:    * child->flags of its traced child (same goes for fork, the parent
2126:    * can write to the child->flags), because we're guaranteed the
2127:    * child is not running and in turn not changing child->flags
2128:    * at the same time the parent does it.
2129:    */
2130:   #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2131:   #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2132:   #define clear_used_math() clear_stopped_child_used_math(current)
2133:   #define set_used_math() set_stopped_child_used_math(current)
2134:   #define conditional_stopped_child_used_math(condition, child) \
2135:   	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2136:   #define conditional_used_math(condition) \
2137:   	conditional_stopped_child_used_math(condition, current)
2138:   #define copy_to_stopped_child_used_math(child) \
2139:   	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2140:   /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2141:   #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2142:   #define used_math() tsk_used_math(current)
2143:   
2144:   /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2145:    * __GFP_FS is also cleared as it implies __GFP_IO.
2146:    */
2147:   static inline gfp_t memalloc_noio_flags(gfp_t flags)
2148:   {
2149:   	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2150:   		flags &= ~(__GFP_IO | __GFP_FS);
2151:   	return flags;
2152:   }
2153:   
2154:   static inline unsigned int memalloc_noio_save(void)
2155:   {
2156:   	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2157:   	current->flags |= PF_MEMALLOC_NOIO;
2158:   	return flags;
2159:   }
2160:   
2161:   static inline void memalloc_noio_restore(unsigned int flags)
2162:   {
2163:   	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2164:   }
2165:   
2166:   /* Per-process atomic flags. */
2167:   #define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
2168:   #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2169:   #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2170:   #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
2171:   #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
2172:   
2173:   #define TASK_PFA_TEST(name, func)					\
2174:   	static inline bool task_##func(struct task_struct *p)		\
2175:   	{ return test_bit(PFA_##name, &p->atomic_flags); }
2176:   #define TASK_PFA_SET(name, func)					\
2177:   	static inline void task_set_##func(struct task_struct *p)	\
2178:   	{ set_bit(PFA_##name, &p->atomic_flags); }
2179:   #define TASK_PFA_CLEAR(name, func)					\
2180:   	static inline void task_clear_##func(struct task_struct *p)	\
2181:   	{ clear_bit(PFA_##name, &p->atomic_flags); }
2182:   
2183:   TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2184:   TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2185:   
2186:   TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2187:   TASK_PFA_SET(SPREAD_PAGE, spread_page)
2188:   TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2189:   
2190:   TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2191:   TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2192:   TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2193:   
2194:   TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
2195:   TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
2196:   TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
2197:   
2198:   TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
2199:   TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
2200:   
2201:   /*
2202:    * task->jobctl flags
2203:    */
2204:   #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
2205:   
2206:   #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
2207:   #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
2208:   #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
2209:   #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
2210:   #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
2211:   #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
2212:   #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
2213:   
2214:   #define JOBCTL_STOP_DEQUEUED	(1UL << JOBCTL_STOP_DEQUEUED_BIT)
2215:   #define JOBCTL_STOP_PENDING	(1UL << JOBCTL_STOP_PENDING_BIT)
2216:   #define JOBCTL_STOP_CONSUME	(1UL << JOBCTL_STOP_CONSUME_BIT)
2217:   #define JOBCTL_TRAP_STOP	(1UL << JOBCTL_TRAP_STOP_BIT)
2218:   #define JOBCTL_TRAP_NOTIFY	(1UL << JOBCTL_TRAP_NOTIFY_BIT)
2219:   #define JOBCTL_TRAPPING		(1UL << JOBCTL_TRAPPING_BIT)
2220:   #define JOBCTL_LISTENING	(1UL << JOBCTL_LISTENING_BIT)
2221:   
2222:   #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2223:   #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2224:   
2225:   extern bool task_set_jobctl_pending(struct task_struct *task,
2226:   				    unsigned long mask);
2227:   extern void task_clear_jobctl_trapping(struct task_struct *task);
2228:   extern void task_clear_jobctl_pending(struct task_struct *task,
2229:   				      unsigned long mask);
2230:   
2231:   static inline void rcu_copy_process(struct task_struct *p)
2232:   {
2233:   #ifdef CONFIG_PREEMPT_RCU
2234:   	p->rcu_read_lock_nesting = 0;
2235:   	p->rcu_read_unlock_special.s = 0;
2236:   	p->rcu_blocked_node = NULL;
2237:   	INIT_LIST_HEAD(&p->rcu_node_entry);
2238:   #endif /* #ifdef CONFIG_PREEMPT_RCU */
2239:   #ifdef CONFIG_TASKS_RCU
2240:   	p->rcu_tasks_holdout = false;
2241:   	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2242:   	p->rcu_tasks_idle_cpu = -1;
2243:   #endif /* #ifdef CONFIG_TASKS_RCU */
2244:   }
2245:   
2246:   static inline void tsk_restore_flags(struct task_struct *task,
2247:   				unsigned long orig_flags, unsigned long flags)
2248:   {
2249:   	task->flags &= ~flags;
2250:   	task->flags |= orig_flags & flags;
2251:   }
2252:   
2253:   extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2254:   				     const struct cpumask *trial);
2255:   extern int task_can_attach(struct task_struct *p,
2256:   			   const struct cpumask *cs_cpus_allowed);
2257:   #ifdef CONFIG_SMP
2258:   extern void do_set_cpus_allowed(struct task_struct *p,
2259:   			       const struct cpumask *new_mask);
2260:   
2261:   extern int set_cpus_allowed_ptr(struct task_struct *p,
2262:   				const struct cpumask *new_mask);
2263:   #else
2264:   static inline void do_set_cpus_allowed(struct task_struct *p,
2265:   				      const struct cpumask *new_mask)
2266:   {
2267:   }
2268:   static inline int set_cpus_allowed_ptr(struct task_struct *p,
2269:   				       const struct cpumask *new_mask)
2270:   {
2271:   	if (!cpumask_test_cpu(0, new_mask))
2272:   		return -EINVAL;
2273:   	return 0;
2274:   }
2275:   #endif
2276:   
2277:   #ifdef CONFIG_NO_HZ_COMMON
2278:   void calc_load_enter_idle(void);
2279:   void calc_load_exit_idle(void);
2280:   #else
2281:   static inline void calc_load_enter_idle(void) { }
2282:   static inline void calc_load_exit_idle(void) { }
2283:   #endif /* CONFIG_NO_HZ_COMMON */
2284:   
2285:   /*
2286:    * Do not use outside of architecture code which knows its limitations.
2287:    *
2288:    * sched_clock() has no promise of monotonicity or bounded drift between
2289:    * CPUs, use (which you should not) requires disabling IRQs.
2290:    *
2291:    * Please use one of the three interfaces below.
2292:    */
2293:   extern unsigned long long notrace sched_clock(void);
2294:   /*
2295:    * See the comment in kernel/sched/clock.c
2296:    */
2297:   extern u64 cpu_clock(int cpu);
2298:   extern u64 local_clock(void);
2299:   extern u64 running_clock(void);
2300:   extern u64 sched_clock_cpu(int cpu);
2301:   
2302:   
2303:   extern void sched_clock_init(void);
2304:   
2305:   #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2306:   static inline void sched_clock_tick(void)
2307:   {
2308:   }
2309:   
2310:   static inline void sched_clock_idle_sleep_event(void)
2311:   {
2312:   }
2313:   
2314:   static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2315:   {
2316:   }
2317:   #else
2318:   /*
2319:    * Architectures can set this to 1 if they have specified
2320:    * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2321:    * but then during bootup it turns out that sched_clock()
2322:    * is reliable after all:
2323:    */
2324:   extern int sched_clock_stable(void);
2325:   extern void set_sched_clock_stable(void);
2326:   extern void clear_sched_clock_stable(void);
2327:   
2328:   extern void sched_clock_tick(void);
2329:   extern void sched_clock_idle_sleep_event(void);
2330:   extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2331:   #endif
2332:   
2333:   #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2334:   /*
2335:    * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2336:    * The reason for this explicit opt-in is not to have perf penalty with
2337:    * slow sched_clocks.
2338:    */
2339:   extern void enable_sched_clock_irqtime(void);
2340:   extern void disable_sched_clock_irqtime(void);
2341:   #else
2342:   static inline void enable_sched_clock_irqtime(void) {}
2343:   static inline void disable_sched_clock_irqtime(void) {}
2344:   #endif
2345:   
2346:   extern unsigned long long
2347:   task_sched_runtime(struct task_struct *task);
2348:   
2349:   /* sched_exec is called by processes performing an exec */
2350:   #ifdef CONFIG_SMP
2351:   extern void sched_exec(void);
2352:   #else
2353:   #define sched_exec()   {}
2354:   #endif
2355:   
2356:   extern void sched_clock_idle_sleep_event(void);
2357:   extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2358:   
2359:   #ifdef CONFIG_HOTPLUG_CPU
2360:   extern void idle_task_exit(void);
2361:   #else
2362:   static inline void idle_task_exit(void) {}
2363:   #endif
2364:   
2365:   #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2366:   extern void wake_up_nohz_cpu(int cpu);
2367:   #else
2368:   static inline void wake_up_nohz_cpu(int cpu) { }
2369:   #endif
2370:   
2371:   #ifdef CONFIG_NO_HZ_FULL
2372:   extern bool sched_can_stop_tick(void);
2373:   extern u64 scheduler_tick_max_deferment(void);
2374:   #else
2375:   static inline bool sched_can_stop_tick(void) { return false; }
2376:   #endif
2377:   
2378:   #ifdef CONFIG_SCHED_AUTOGROUP
2379:   extern void sched_autogroup_create_attach(struct task_struct *p);
2380:   extern void sched_autogroup_detach(struct task_struct *p);
2381:   extern void sched_autogroup_fork(struct signal_struct *sig);
2382:   extern void sched_autogroup_exit(struct signal_struct *sig);
2383:   #ifdef CONFIG_PROC_FS
2384:   extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2385:   extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2386:   #endif
2387:   #else
2388:   static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2389:   static inline void sched_autogroup_detach(struct task_struct *p) { }
2390:   static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2391:   static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2392:   #endif
2393:   
2394:   extern int yield_to(struct task_struct *p, bool preempt);
2395:   extern void set_user_nice(struct task_struct *p, long nice);
2396:   extern int task_prio(const struct task_struct *p);
2397:   /**
2398:    * task_nice - return the nice value of a given task.
2399:    * @p: the task in question.
2400:    *
2401:    * Return: The nice value [ -20 ... 0 ... 19 ].
2402:    */
2403:   static inline int task_nice(const struct task_struct *p)
2404:   {
2405:   	return PRIO_TO_NICE((p)->static_prio);
2406:   }
2407:   extern int can_nice(const struct task_struct *p, const int nice);
2408:   extern int task_curr(const struct task_struct *p);
2409:   extern int idle_cpu(int cpu);
2410:   extern int sched_setscheduler(struct task_struct *, int,
2411:   			      const struct sched_param *);
2412:   extern int sched_setscheduler_nocheck(struct task_struct *, int,
2413:   				      const struct sched_param *);
2414:   extern int sched_setattr(struct task_struct *,
2415:   			 const struct sched_attr *);
2416:   extern struct task_struct *idle_task(int cpu);
2417:   /**
2418:    * is_idle_task - is the specified task an idle task?
2419:    * @p: the task in question.
2420:    *
2421:    * Return: 1 if @p is an idle task. 0 otherwise.
2422:    */
2423:   static inline bool is_idle_task(const struct task_struct *p)
2424:   {
2425:   	return p->pid == 0;
2426:   }
2427:   extern struct task_struct *curr_task(int cpu);
2428:   extern void set_curr_task(int cpu, struct task_struct *p);
2429:   
2430:   void yield(void);
2431:   
2432:   union thread_union {
2433:   	struct thread_info thread_info;
2434:   	unsigned long stack[THREAD_SIZE/sizeof(long)];
2435:   };
2436:   
2437:   #ifndef __HAVE_ARCH_KSTACK_END
2438:   static inline int kstack_end(void *addr)
2439:   {
2440:   	/* Reliable end of stack detection:
2441:   	 * Some APM bios versions misalign the stack
2442:   	 */
2443:   	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2444:   }
2445:   #endif
2446:   
2447:   extern union thread_union init_thread_union;
2448:   extern struct task_struct init_task;
2449:   
2450:   extern struct   mm_struct init_mm;
2451:   
2452:   extern struct pid_namespace init_pid_ns;
2453:   
2454:   /*
2455:    * find a task by one of its numerical ids
2456:    *
2457:    * find_task_by_pid_ns():
2458:    *      finds a task by its pid in the specified namespace
2459:    * find_task_by_vpid():
2460:    *      finds a task by its virtual pid
2461:    *
2462:    * see also find_vpid() etc in include/linux/pid.h
2463:    */
2464:   
2465:   extern struct task_struct *find_task_by_vpid(pid_t nr);
2466:   extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2467:   		struct pid_namespace *ns);
2468:   
2469:   /* per-UID process charging. */
2470:   extern struct user_struct * alloc_uid(kuid_t);
2471:   static inline struct user_struct *get_uid(struct user_struct *u)
2472:   {
2473:   	atomic_inc(&u->__count);
2474:   	return u;
2475:   }
2476:   extern void free_uid(struct user_struct *);
2477:   
2478:   #include <asm/current.h>
2479:   
2480:   extern void xtime_update(unsigned long ticks);
2481:   
2482:   extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2483:   extern int wake_up_process(struct task_struct *tsk);
2484:   extern void wake_up_new_task(struct task_struct *tsk);
2485:   #ifdef CONFIG_SMP
2486:    extern void kick_process(struct task_struct *tsk);
2487:   #else
2488:    static inline void kick_process(struct task_struct *tsk) { }
2489:   #endif
2490:   extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2491:   extern void sched_dead(struct task_struct *p);
2492:   
2493:   extern void proc_caches_init(void);
2494:   extern void flush_signals(struct task_struct *);
2495:   extern void ignore_signals(struct task_struct *);
2496:   extern void flush_signal_handlers(struct task_struct *, int force_default);
2497:   extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2498:   
2499:   static inline int kernel_dequeue_signal(siginfo_t *info)
2500:   {
2501:   	struct task_struct *tsk = current;
2502:   	siginfo_t __info;
2503:   	int ret;
2504:   
2505:   	spin_lock_irq(&tsk->sighand->siglock);
2506:   	ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2507:   	spin_unlock_irq(&tsk->sighand->siglock);
2508:   
2509:   	return ret;
2510:   }
2511:   
2512:   static inline void kernel_signal_stop(void)
2513:   {
2514:   	spin_lock_irq(&current->sighand->siglock);
2515:   	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2516:   		__set_current_state(TASK_STOPPED);
2517:   	spin_unlock_irq(&current->sighand->siglock);
2518:   
2519:   	schedule();
2520:   }
2521:   
2522:   extern void release_task(struct task_struct * p);
2523:   extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2524:   extern int force_sigsegv(int, struct task_struct *);
2525:   extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2526:   extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2527:   extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2528:   extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2529:   				const struct cred *, u32);
2530:   extern int kill_pgrp(struct pid *pid, int sig, int priv);
2531:   extern int kill_pid(struct pid *pid, int sig, int priv);
2532:   extern int kill_proc_info(int, struct siginfo *, pid_t);
2533:   extern __must_check bool do_notify_parent(struct task_struct *, int);
2534:   extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2535:   extern void force_sig(int, struct task_struct *);
2536:   extern int send_sig(int, struct task_struct *, int);
2537:   extern int zap_other_threads(struct task_struct *p);
2538:   extern struct sigqueue *sigqueue_alloc(void);
2539:   extern void sigqueue_free(struct sigqueue *);
2540:   extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2541:   extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2542:   
2543:   static inline void restore_saved_sigmask(void)
2544:   {
2545:   	if (test_and_clear_restore_sigmask())
2546:   		__set_current_blocked(&current->saved_sigmask);
2547:   }
2548:   
2549:   static inline sigset_t *sigmask_to_save(void)
2550:   {
2551:   	sigset_t *res = &current->blocked;
2552:   	if (unlikely(test_restore_sigmask()))
2553:   		res = &current->saved_sigmask;
2554:   	return res;
2555:   }
2556:   
2557:   static inline int kill_cad_pid(int sig, int priv)
2558:   {
2559:   	return kill_pid(cad_pid, sig, priv);
2560:   }
2561:   
2562:   /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2563:   #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2564:   #define SEND_SIG_PRIV	((struct siginfo *) 1)
2565:   #define SEND_SIG_FORCED	((struct siginfo *) 2)
2566:   
2567:   /*
2568:    * True if we are on the alternate signal stack.
2569:    */
2570:   static inline int on_sig_stack(unsigned long sp)
2571:   {
2572:   #ifdef CONFIG_STACK_GROWSUP
2573:   	return sp >= current->sas_ss_sp &&
2574:   		sp - current->sas_ss_sp < current->sas_ss_size;
2575:   #else
2576:   	return sp > current->sas_ss_sp &&
2577:   		sp - current->sas_ss_sp <= current->sas_ss_size;
2578:   #endif
2579:   }
2580:   
2581:   static inline int sas_ss_flags(unsigned long sp)
2582:   {
2583:   	if (!current->sas_ss_size)
2584:   		return SS_DISABLE;
2585:   
2586:   	return on_sig_stack(sp) ? SS_ONSTACK : 0;
2587:   }
2588:   
2589:   static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2590:   {
2591:   	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2592:   #ifdef CONFIG_STACK_GROWSUP
2593:   		return current->sas_ss_sp;
2594:   #else
2595:   		return current->sas_ss_sp + current->sas_ss_size;
2596:   #endif
2597:   	return sp;
2598:   }
2599:   
2600:   /*
2601:    * Routines for handling mm_structs
2602:    */
2603:   extern struct mm_struct * mm_alloc(void);
2604:   
2605:   /* mmdrop drops the mm and the page tables */
2606:   extern void __mmdrop(struct mm_struct *);
2607:   static inline void mmdrop(struct mm_struct * mm)
2608:   {
2609:   	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2610:   		__mmdrop(mm);
2611:   }
2612:   
2613:   /* mmput gets rid of the mappings and all user-space */
2614:   extern void mmput(struct mm_struct *);
2615:   /* Grab a reference to a task's mm, if it is not already going away */
2616:   extern struct mm_struct *get_task_mm(struct task_struct *task);
2617:   /*
2618:    * Grab a reference to a task's mm, if it is not already going away
2619:    * and ptrace_may_access with the mode parameter passed to it
2620:    * succeeds.
2621:    */
2622:   extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2623:   /* Remove the current tasks stale references to the old mm_struct */
2624:   extern void mm_release(struct task_struct *, struct mm_struct *);
2625:   
2626:   #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2627:   extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2628:   			struct task_struct *, unsigned long);
2629:   #else
2630:   extern int copy_thread(unsigned long, unsigned long, unsigned long,
2631:   			struct task_struct *);
2632:   
2633:   /* Architectures that haven't opted into copy_thread_tls get the tls argument
2634:    * via pt_regs, so ignore the tls argument passed via C. */
2635:   static inline int copy_thread_tls(
2636:   		unsigned long clone_flags, unsigned long sp, unsigned long arg,
2637:   		struct task_struct *p, unsigned long tls)
2638:   {
2639:   	return copy_thread(clone_flags, sp, arg, p);
2640:   }
2641:   #endif
2642:   extern void flush_thread(void);
2643:   extern void exit_thread(void);
2644:   
2645:   extern void exit_files(struct task_struct *);
2646:   extern void __cleanup_sighand(struct sighand_struct *);
2647:   
2648:   extern void exit_itimers(struct signal_struct *);
2649:   extern void flush_itimer_signals(void);
2650:   
2651:   extern void do_group_exit(int);
2652:   
2653:   extern int do_execve(struct filename *,
2654:   		     const char __user * const __user *,
2655:   		     const char __user * const __user *);
2656:   extern int do_execveat(int, struct filename *,
2657:   		       const char __user * const __user *,
2658:   		       const char __user * const __user *,
2659:   		       int);
2660:   extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2661:   extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2662:   struct task_struct *fork_idle(int);
2663:   extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2664:   
2665:   extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2666:   static inline void set_task_comm(struct task_struct *tsk, const char *from)
2667:   {
2668:   	__set_task_comm(tsk, from, false);
2669:   }
2670:   extern char *get_task_comm(char *to, struct task_struct *tsk);
2671:   
2672:   #ifdef CONFIG_SMP
2673:   void scheduler_ipi(void);
2674:   extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2675:   #else
2676:   static inline void scheduler_ipi(void) { }
2677:   static inline unsigned long wait_task_inactive(struct task_struct *p,
2678:   					       long match_state)
2679:   {
2680:   	return 1;
2681:   }
2682:   #endif
2683:   
2684:   #define tasklist_empty() \
2685:   	list_empty(&init_task.tasks)
2686:   
2687:   #define next_task(p) \
2688:   	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2689:   
2690:   #define for_each_process(p) \
2691:   	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2692:   
2693:   extern bool current_is_single_threaded(void);
2694:   
2695:   /*
2696:    * Careful: do_each_thread/while_each_thread is a double loop so
2697:    *          'break' will not work as expected - use goto instead.
2698:    */
2699:   #define do_each_thread(g, t) \
2700:   	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2701:   
2702:   #define while_each_thread(g, t) \
2703:   	while ((t = next_thread(t)) != g)
2704:   
2705:   #define __for_each_thread(signal, t)	\
2706:   	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2707:   
2708:   #define for_each_thread(p, t)		\
2709:   	__for_each_thread((p)->signal, t)
2710:   
2711:   /* Careful: this is a double loop, 'break' won't work as expected. */
2712:   #define for_each_process_thread(p, t)	\
2713:   	for_each_process(p) for_each_thread(p, t)
2714:   
2715:   static inline int get_nr_threads(struct task_struct *tsk)
2716:   {
2717:   	return tsk->signal->nr_threads;
2718:   }
2719:   
2720:   static inline bool thread_group_leader(struct task_struct *p)
2721:   {
2722:   	return p->exit_signal >= 0;
2723:   }
2724:   
2725:   /* Do to the insanities of de_thread it is possible for a process
2726:    * to have the pid of the thread group leader without actually being
2727:    * the thread group leader.  For iteration through the pids in proc
2728:    * all we care about is that we have a task with the appropriate
2729:    * pid, we don't actually care if we have the right task.
2730:    */
2731:   static inline bool has_group_leader_pid(struct task_struct *p)
2732:   {
2733:   	return task_pid(p) == p->signal->leader_pid;
2734:   }
2735:   
2736:   static inline
2737:   bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2738:   {
2739:   	return p1->signal == p2->signal;
2740:   }
2741:   
2742:   static inline struct task_struct *next_thread(const struct task_struct *p)
2743:   {
2744:   	return list_entry_rcu(p->thread_group.next,
2745:   			      struct task_struct, thread_group);
2746:   }
2747:   
2748:   static inline int thread_group_empty(struct task_struct *p)
2749:   {
2750:   	return list_empty(&p->thread_group);
2751:   }
2752:   
2753:   #define delay_group_leader(p) \
2754:   		(thread_group_leader(p) && !thread_group_empty(p))
2755:   
2756:   /*
2757:    * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2758:    * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2759:    * pins the final release of task.io_context.  Also protects ->cpuset and
2760:    * ->cgroup.subsys[]. And ->vfork_done.
2761:    *
2762:    * Nests both inside and outside of read_lock(&tasklist_lock).
2763:    * It must not be nested with write_lock_irq(&tasklist_lock),
2764:    * neither inside nor outside.
2765:    */
2766:   static inline void task_lock(struct task_struct *p)
2767:   {
2768:   	spin_lock(&p->alloc_lock);
2769:   }
2770:   
2771:   static inline void task_unlock(struct task_struct *p)
2772:   {
2773:   	spin_unlock(&p->alloc_lock);
2774:   }
2775:   
2776:   extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2777:   							unsigned long *flags);
2778:   
2779:   static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2780:   						       unsigned long *flags)
2781:   {
2782:   	struct sighand_struct *ret;
2783:   
2784:   	ret = __lock_task_sighand(tsk, flags);
2785:   	(void)__cond_lock(&tsk->sighand->siglock, ret);
2786:   	return ret;
2787:   }
2788:   
2789:   static inline void unlock_task_sighand(struct task_struct *tsk,
2790:   						unsigned long *flags)
2791:   {
2792:   	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2793:   }
2794:   
2795:   /**
2796:    * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2797:    * @tsk: task causing the changes
2798:    *
2799:    * All operations which modify a threadgroup - a new thread joining the
2800:    * group, death of a member thread (the assertion of PF_EXITING) and
2801:    * exec(2) dethreading the process and replacing the leader - are wrapped
2802:    * by threadgroup_change_{begin|end}().  This is to provide a place which
2803:    * subsystems needing threadgroup stability can hook into for
2804:    * synchronization.
2805:    */
2806:   static inline void threadgroup_change_begin(struct task_struct *tsk)
2807:   {
2808:   	might_sleep();
2809:   	cgroup_threadgroup_change_begin(tsk);
2810:   }
2811:   
2812:   /**
2813:    * threadgroup_change_end - mark the end of changes to a threadgroup
2814:    * @tsk: task causing the changes
2815:    *
2816:    * See threadgroup_change_begin().
2817:    */
2818:   static inline void threadgroup_change_end(struct task_struct *tsk)
2819:   {
2820:   	cgroup_threadgroup_change_end(tsk);
2821:   }
2822:   
2823:   #ifndef __HAVE_THREAD_FUNCTIONS
2824:   
2825:   #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2826:   #define task_stack_page(task)	((task)->stack)
2827:   
2828:   static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2829:   {
2830:   	*task_thread_info(p) = *task_thread_info(org);
2831:   	task_thread_info(p)->task = p;
2832:   }
2833:   
2834:   /*
2835:    * Return the address of the last usable long on the stack.
2836:    *
2837:    * When the stack grows down, this is just above the thread
2838:    * info struct. Going any lower will corrupt the threadinfo.
2839:    *
2840:    * When the stack grows up, this is the highest address.
2841:    * Beyond that position, we corrupt data on the next page.
2842:    */
2843:   static inline unsigned long *end_of_stack(struct task_struct *p)
2844:   {
2845:   #ifdef CONFIG_STACK_GROWSUP
2846:   	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2847:   #else
2848:   	return (unsigned long *)(task_thread_info(p) + 1);
2849:   #endif
2850:   }
2851:   
2852:   #endif
2853:   #define task_stack_end_corrupted(task) \
2854:   		(*(end_of_stack(task)) != STACK_END_MAGIC)
2855:   
2856:   static inline int object_is_on_stack(void *obj)
2857:   {
2858:   	void *stack = task_stack_page(current);
2859:   
2860:   	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2861:   }
2862:   
2863:   extern void thread_info_cache_init(void);
2864:   
2865:   #ifdef CONFIG_DEBUG_STACK_USAGE
2866:   static inline unsigned long stack_not_used(struct task_struct *p)
2867:   {
2868:   	unsigned long *n = end_of_stack(p);
2869:   
2870:   	do { 	/* Skip over canary */
2871:   		n++;
2872:   	} while (!*n);
2873:   
2874:   	return (unsigned long)n - (unsigned long)end_of_stack(p);
2875:   }
2876:   #endif
2877:   extern void set_task_stack_end_magic(struct task_struct *tsk);
2878:   
2879:   /* set thread flags in other task's structures
2880:    * - see asm/thread_info.h for TIF_xxxx flags available
2881:    */
2882:   static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2883:   {
2884:   	set_ti_thread_flag(task_thread_info(tsk), flag);
2885:   }
2886:   
2887:   static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2888:   {
2889:   	clear_ti_thread_flag(task_thread_info(tsk), flag);
2890:   }
2891:   
2892:   static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2893:   {
2894:   	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2895:   }
2896:   
2897:   static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2898:   {
2899:   	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2900:   }
2901:   
2902:   static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2903:   {
2904:   	return test_ti_thread_flag(task_thread_info(tsk), flag);
2905:   }
2906:   
2907:   static inline void set_tsk_need_resched(struct task_struct *tsk)
2908:   {
2909:   	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2910:   }
2911:   
2912:   static inline void clear_tsk_need_resched(struct task_struct *tsk)
2913:   {
2914:   	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2915:   }
2916:   
2917:   static inline int test_tsk_need_resched(struct task_struct *tsk)
2918:   {
2919:   	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2920:   }
2921:   
2922:   static inline int restart_syscall(void)
2923:   {
2924:   	set_tsk_thread_flag(current, TIF_SIGPENDING);
2925:   	return -ERESTARTNOINTR;
2926:   }
2927:   
2928:   static inline int signal_pending(struct task_struct *p)
2929:   {
2930:   	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2931:   }
2932:   
2933:   static inline int __fatal_signal_pending(struct task_struct *p)
2934:   {
2935:   	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2936:   }
2937:   
2938:   static inline int fatal_signal_pending(struct task_struct *p)
2939:   {
2940:   	return signal_pending(p) && __fatal_signal_pending(p);
2941:   }
2942:   
2943:   static inline int signal_pending_state(long state, struct task_struct *p)
2944:   {
2945:   	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2946:   		return 0;
2947:   	if (!signal_pending(p))
2948:   		return 0;
2949:   
2950:   	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2951:   }
2952:   
2953:   /*
2954:    * cond_resched() and cond_resched_lock(): latency reduction via
2955:    * explicit rescheduling in places that are safe. The return
2956:    * value indicates whether a reschedule was done in fact.
2957:    * cond_resched_lock() will drop the spinlock before scheduling,
2958:    * cond_resched_softirq() will enable bhs before scheduling.
2959:    */
2960:   extern int _cond_resched(void);
2961:   
2962:   #define cond_resched() ({			\
2963:   	___might_sleep(__FILE__, __LINE__, 0);	\
2964:   	_cond_resched();			\
2965:   })
2966:   
2967:   extern int __cond_resched_lock(spinlock_t *lock);
2968:   
2969:   #define cond_resched_lock(lock) ({				\
2970:   	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2971:   	__cond_resched_lock(lock);				\
2972:   })
2973:   
2974:   extern int __cond_resched_softirq(void);
2975:   
2976:   #define cond_resched_softirq() ({					\
2977:   	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2978:   	__cond_resched_softirq();					\
2979:   })
2980:   
2981:   static inline void cond_resched_rcu(void)
2982:   {
2983:   #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2984:   	rcu_read_unlock();
2985:   	cond_resched();
2986:   	rcu_read_lock();
2987:   #endif
2988:   }
2989:   
2990:   /*
2991:    * Does a critical section need to be broken due to another
2992:    * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2993:    * but a general need for low latency)
2994:    */
2995:   static inline int spin_needbreak(spinlock_t *lock)
2996:   {
2997:   #ifdef CONFIG_PREEMPT
2998:   	return spin_is_contended(lock);
2999:   #else
3000:   	return 0;
3001:   #endif
3002:   }
3003:   
3004:   /*
3005:    * Idle thread specific functions to determine the need_resched
3006:    * polling state.
3007:    */
3008:   #ifdef TIF_POLLING_NRFLAG
3009:   static inline int tsk_is_polling(struct task_struct *p)
3010:   {
3011:   	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3012:   }
3013:   
3014:   static inline void __current_set_polling(void)
3015:   {
3016:   	set_thread_flag(TIF_POLLING_NRFLAG);
3017:   }
3018:   
3019:   static inline bool __must_check current_set_polling_and_test(void)
3020:   {
3021:   	__current_set_polling();
3022:   
3023:   	/*
3024:   	 * Polling state must be visible before we test NEED_RESCHED,
3025:   	 * paired by resched_curr()
3026:   	 */
3027:   	smp_mb__after_atomic();
3028:   
3029:   	return unlikely(tif_need_resched());
3030:   }
3031:   
3032:   static inline void __current_clr_polling(void)
3033:   {
3034:   	clear_thread_flag(TIF_POLLING_NRFLAG);
3035:   }
3036:   
3037:   static inline bool __must_check current_clr_polling_and_test(void)
3038:   {
3039:   	__current_clr_polling();
3040:   
3041:   	/*
3042:   	 * Polling state must be visible before we test NEED_RESCHED,
3043:   	 * paired by resched_curr()
3044:   	 */
3045:   	smp_mb__after_atomic();
3046:   
3047:   	return unlikely(tif_need_resched());
3048:   }
3049:   
3050:   #else
3051:   static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3052:   static inline void __current_set_polling(void) { }
3053:   static inline void __current_clr_polling(void) { }
3054:   
3055:   static inline bool __must_check current_set_polling_and_test(void)
3056:   {
3057:   	return unlikely(tif_need_resched());
3058:   }
3059:   static inline bool __must_check current_clr_polling_and_test(void)
3060:   {
3061:   	return unlikely(tif_need_resched());
3062:   }
3063:   #endif
3064:   
3065:   static inline void current_clr_polling(void)
3066:   {
3067:   	__current_clr_polling();
3068:   
3069:   	/*
3070:   	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3071:   	 * Once the bit is cleared, we'll get IPIs with every new
3072:   	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3073:   	 * fold.
3074:   	 */
3075:   	smp_mb(); /* paired with resched_curr() */
3076:   
3077:   	preempt_fold_need_resched();
3078:   }
3079:   
3080:   static __always_inline bool need_resched(void)
3081:   {
3082:   	return unlikely(tif_need_resched());
3083:   }
3084:   
3085:   /*
3086:    * Thread group CPU time accounting.
3087:    */
3088:   void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3089:   void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3090:   
3091:   /*
3092:    * Reevaluate whether the task has signals pending delivery.
3093:    * Wake the task if so.
3094:    * This is required every time the blocked sigset_t changes.
3095:    * callers must hold sighand->siglock.
3096:    */
3097:   extern void recalc_sigpending_and_wake(struct task_struct *t);
3098:   extern void recalc_sigpending(void);
3099:   
3100:   extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3101:   
3102:   static inline void signal_wake_up(struct task_struct *t, bool resume)
3103:   {
3104:   	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3105:   }
3106:   static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3107:   {
3108:   	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3109:   }
3110:   
3111:   /*
3112:    * Wrappers for p->thread_info->cpu access. No-op on UP.
3113:    */
3114:   #ifdef CONFIG_SMP
3115:   
3116:   static inline unsigned int task_cpu(const struct task_struct *p)
3117:   {
3118:   	return task_thread_info(p)->cpu;
3119:   }
3120:   
3121:   static inline int task_node(const struct task_struct *p)
3122:   {
3123:   	return cpu_to_node(task_cpu(p));
3124:   }
3125:   
3126:   extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3127:   
3128:   #else
3129:   
3130:   static inline unsigned int task_cpu(const struct task_struct *p)
3131:   {
3132:   	return 0;
3133:   }
3134:   
3135:   static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3136:   {
3137:   }
3138:   
3139:   #endif /* CONFIG_SMP */
3140:   
3141:   extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3142:   extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3143:   
3144:   #ifdef CONFIG_CGROUP_SCHED
3145:   extern struct task_group root_task_group;
3146:   #endif /* CONFIG_CGROUP_SCHED */
3147:   
3148:   extern int task_can_switch_user(struct user_struct *up,
3149:   					struct task_struct *tsk);
3150:   
3151:   #ifdef CONFIG_TASK_XACCT
3152:   static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3153:   {
3154:   	tsk->ioac.rchar += amt;
3155:   }
3156:   
3157:   static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3158:   {
3159:   	tsk->ioac.wchar += amt;
3160:   }
3161:   
3162:   static inline void inc_syscr(struct task_struct *tsk)
3163:   {
3164:   	tsk->ioac.syscr++;
3165:   }
3166:   
3167:   static inline void inc_syscw(struct task_struct *tsk)
3168:   {
3169:   	tsk->ioac.syscw++;
3170:   }
3171:   #else
3172:   static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3173:   {
3174:   }
3175:   
3176:   static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3177:   {
3178:   }
3179:   
3180:   static inline void inc_syscr(struct task_struct *tsk)
3181:   {
3182:   }
3183:   
3184:   static inline void inc_syscw(struct task_struct *tsk)
3185:   {
3186:   }
3187:   #endif
3188:   
3189:   #ifndef TASK_SIZE_OF
3190:   #define TASK_SIZE_OF(tsk)	TASK_SIZE
3191:   #endif
3192:   
3193:   #ifdef CONFIG_MEMCG
3194:   extern void mm_update_next_owner(struct mm_struct *mm);
3195:   #else
3196:   static inline void mm_update_next_owner(struct mm_struct *mm)
3197:   {
3198:   }
3199:   #endif /* CONFIG_MEMCG */
3200:   
3201:   static inline unsigned long task_rlimit(const struct task_struct *tsk,
3202:   		unsigned int limit)
3203:   {
3204:   	return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3205:   }
3206:   
3207:   static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3208:   		unsigned int limit)
3209:   {
3210:   	return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3211:   }
3212:   
3213:   static inline unsigned long rlimit(unsigned int limit)
3214:   {
3215:   	return task_rlimit(current, limit);
3216:   }
3217:   
3218:   static inline unsigned long rlimit_max(unsigned int limit)
3219:   {
3220:   	return task_rlimit_max(current, limit);
3221:   }
3222:   
3223:   #endif