0001:  #ifndef _LINUX_SCHED_H
0002:  #define _LINUX_SCHED_H
0003:  
0004:  /*
0005:   * cloning flags:
0006:   */
0007:  #define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
0008:  #define CLONE_VM        0x00000100      /* set if VM shared between processes */
0009:  #define CLONE_FS        0x00000200      /* set if fs info shared between processes */
0010:  #define CLONE_FILES     0x00000400      /* set if open files shared between processes */
0011:  #define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
0012:  #define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
0013:  #define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
0014:  #define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
0015:  #define CLONE_THREAD    0x00010000      /* Same thread group? */
0016:  #define CLONE_NEWNS     0x00020000      /* New namespace group? */
0017:  #define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
0018:  #define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
0019:  #define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
0020:  #define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
0021:  #define CLONE_DETACHED          0x00400000      /* Unused, ignored */
0022:  #define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
0023:  #define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
0024:  /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
0025:     and is now available for re-use. */
0026:  #define CLONE_NEWUTS            0x04000000      /* New utsname group? */
0027:  #define CLONE_NEWIPC            0x08000000      /* New ipcs */
0028:  #define CLONE_NEWUSER           0x10000000      /* New user namespace */
0029:  #define CLONE_NEWPID            0x20000000      /* New pid namespace */
0030:  #define CLONE_NEWNET            0x40000000      /* New network namespace */
0031:  #define CLONE_IO                0x80000000      /* Clone io context */
0032:  
0033:  /*
0034:   * Scheduling policies
0035:   */
0036:  #define SCHED_NORMAL            0
0037:  #define SCHED_FIFO              1
0038:  #define SCHED_RR                2
0039:  #define SCHED_BATCH             3
0040:  /* SCHED_ISO: reserved but not implemented yet */
0041:  #define SCHED_IDLE              5
0042:  /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
0043:  #define SCHED_RESET_ON_FORK     0x40000000
0044:  
0045:  #ifdef __KERNEL__
0046:  
0047:  struct sched_param {
0048:          int sched_priority;
0049:  };
0050:  
0051:  #include <asm/param.h>  /* for HZ */
0052:  
0053:  #include <linux/capability.h>
0054:  #include <linux/threads.h>
0055:  #include <linux/kernel.h>
0056:  #include <linux/types.h>
0057:  #include <linux/timex.h>
0058:  #include <linux/jiffies.h>
0059:  #include <linux/rbtree.h>
0060:  #include <linux/thread_info.h>
0061:  #include <linux/cpumask.h>
0062:  #include <linux/errno.h>
0063:  #include <linux/nodemask.h>
0064:  #include <linux/mm_types.h>
0065:  
0066:  #include <asm/system.h>
0067:  #include <asm/page.h>
0068:  #include <asm/ptrace.h>
0069:  #include <asm/cputime.h>
0070:  
0071:  #include <linux/smp.h>
0072:  #include <linux/sem.h>
0073:  #include <linux/signal.h>
0074:  #include <linux/compiler.h>
0075:  #include <linux/completion.h>
0076:  #include <linux/pid.h>
0077:  #include <linux/percpu.h>
0078:  #include <linux/topology.h>
0079:  #include <linux/proportions.h>
0080:  #include <linux/seccomp.h>
0081:  #include <linux/rcupdate.h>
0082:  #include <linux/rculist.h>
0083:  #include <linux/rtmutex.h>
0084:  
0085:  #include <linux/time.h>
0086:  #include <linux/param.h>
0087:  #include <linux/resource.h>
0088:  #include <linux/timer.h>
0089:  #include <linux/hrtimer.h>
0090:  #include <linux/task_io_accounting.h>
0091:  #include <linux/latencytop.h>
0092:  #include <linux/cred.h>
0093:  #include <linux/llist.h>
0094:  
0095:  #include <asm/processor.h>
0096:  
0097:  struct exec_domain;
0098:  struct futex_pi_state;
0099:  struct robust_list_head;
0100:  struct bio_list;
0101:  struct fs_struct;
0102:  struct perf_event_context;
0103:  struct blk_plug;
0104:  
0105:  extern int disable_nx;
0106:  extern int print_fatal_signals;
0107:  
0108:  /*
0109:   * List of flags we want to share for kernel threads,
0110:   * if only because they are not used by them anyway.
0111:   */
0112:  #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
0113:  
0114:  /*
0115:   * These are the constant used to fake the fixed-point load-average
0116:   * counting. Some notes:
0117:   *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
0118:   *    a load-average precision of 10 bits integer + 11 bits fractional
0119:   *  - if you want to count load-averages more often, you need more
0120:   *    precision, or rounding will get you. With 2-second counting freq,
0121:   *    the EXP_n values would be 1981, 2034 and 2043 if still using only
0122:   *    11 bit fractions.
0123:   */
0124:  extern unsigned long avenrun[];         /* Load averages */
0125:  extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
0126:  
0127:  #define FSHIFT          11              /* nr of bits of precision */
0128:  #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
0129:  #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
0130:  #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
0131:  #define EXP_5           2014            /* 1/exp(5sec/5min) */
0132:  #define EXP_15          2037            /* 1/exp(5sec/15min) */
0133:  
0134:  #define CALC_LOAD(load,exp,n) \
0135:          load *= exp; \
0136:          load += n*(FIXED_1-exp); \
0137:          load >>= FSHIFT;
0138:  
0139:  extern unsigned long total_forks;
0140:  extern int nr_threads;
0141:  DECLARE_PER_CPU(unsigned long, process_counts);
0142:  extern int nr_processes(void);
0143:  extern unsigned long nr_running(void);
0144:  extern unsigned long nr_uninterruptible(void);
0145:  extern unsigned long nr_iowait(void);
0146:  extern unsigned long nr_iowait_cpu(int cpu);
0147:  extern unsigned long this_cpu_load(void);
0148:  
0149:  
0150:  extern void calc_global_load(unsigned long ticks);
0151:  extern void update_cpu_load_nohz(void);
0152:  
0153:  extern unsigned long get_parent_ip(unsigned long addr);
0154:  
0155:  struct seq_file;
0156:  struct cfs_rq;
0157:  struct task_group;
0158:  #ifdef CONFIG_SCHED_DEBUG
0159:  extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
0160:  extern void proc_sched_set_task(struct task_struct *p);
0161:  extern void
0162:  print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
0163:  #else
0164:  static inline void
0165:  proc_sched_show_task(struct task_struct *p, struct seq_file *m)
0166:  {
0167:  }
0168:  static inline void proc_sched_set_task(struct task_struct *p)
0169:  {
0170:  }
0171:  static inline void
0172:  print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
0173:  {
0174:  }
0175:  #endif
0176:  
0177:  /*
0178:   * Task state bitmask. NOTE! These bits are also
0179:   * encoded in fs/proc/array.c: get_task_state().
0180:   *
0181:   * We have two separate sets of flags: task->state
0182:   * is about runnability, while task->exit_state are
0183:   * about the task exiting. Confusing, but this way
0184:   * modifying one set can't modify the other one by
0185:   * mistake.
0186:   */
0187:  #define TASK_RUNNING            0
0188:  #define TASK_INTERRUPTIBLE      1
0189:  #define TASK_UNINTERRUPTIBLE    2
0190:  #define __TASK_STOPPED          4
0191:  #define __TASK_TRACED           8
0192:  /* in tsk->exit_state */
0193:  #define EXIT_ZOMBIE             16
0194:  #define EXIT_DEAD               32
0195:  /* in tsk->state again */
0196:  #define TASK_DEAD               64
0197:  #define TASK_WAKEKILL           128
0198:  #define TASK_WAKING             256
0199:  #define TASK_STATE_MAX          512
0200:  
0201:  #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
0202:  
0203:  extern char ___assert_task_state[1 - 2*!!(
0204:                  sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
0205:  
0206:  /* Convenience macros for the sake of set_task_state */
0207:  #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
0208:  #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
0209:  #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
0210:  
0211:  /* Convenience macros for the sake of wake_up */
0212:  #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
0213:  #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
0214:  
0215:  /* get_task_state() */
0216:  #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
0217:                                   TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
0218:                                   __TASK_TRACED)
0219:  
0220:  #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
0221:  #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
0222:  #define task_is_dead(task)      ((task)->exit_state != 0)
0223:  #define task_is_stopped_or_traced(task) \
0224:                          ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
0225:  #define task_contributes_to_load(task)  \
0226:                                  ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
0227:                                   (task->flags & PF_FREEZING) == 0)
0228:  
0229:  #define __set_task_state(tsk, state_value)              \
0230:          do { (tsk)->state = (state_value); } while (0)
0231:  #define set_task_state(tsk, state_value)                \
0232:          set_mb((tsk)->state, (state_value))
0233:  
0234:  /*
0235:   * set_current_state() includes a barrier so that the write of current->state
0236:   * is correctly serialised wrt the caller's subsequent test of whether to
0237:   * actually sleep:
0238:   *
0239:   *      set_current_state(TASK_UNINTERRUPTIBLE);
0240:   *      if (do_i_need_to_sleep())
0241:   *              schedule();
0242:   *
0243:   * If the caller does not need such serialisation then use __set_current_state()
0244:   */
0245:  #define __set_current_state(state_value)                        \
0246:          do { current->state = (state_value); } while (0)
0247:  #define set_current_state(state_value)          \
0248:          set_mb(current->state, (state_value))
0249:  
0250:  /* Task command name length */
0251:  #define TASK_COMM_LEN 16
0252:  
0253:  #include <linux/spinlock.h>
0254:  
0255:  /*
0256:   * This serializes "schedule()" and also protects
0257:   * the run-queue from deletions/modifications (but
0258:   * _adding_ to the beginning of the run-queue has
0259:   * a separate lock).
0260:   */
0261:  extern rwlock_t tasklist_lock;
0262:  extern spinlock_t mmlist_lock;
0263:  
0264:  struct task_struct;
0265:  
0266:  #ifdef CONFIG_PROVE_RCU
0267:  extern int lockdep_tasklist_lock_is_held(void);
0268:  #endif /* #ifdef CONFIG_PROVE_RCU */
0269:  
0270:  extern void sched_init(void);
0271:  extern void sched_init_smp(void);
0272:  extern asmlinkage void schedule_tail(struct task_struct *prev);
0273:  extern void init_idle(struct task_struct *idle, int cpu);
0274:  extern void init_idle_bootup_task(struct task_struct *idle);
0275:  
0276:  extern int runqueue_is_locked(int cpu);
0277:  
0278:  #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
0279:  extern void select_nohz_load_balancer(int stop_tick);
0280:  extern int get_nohz_timer_target(void);
0281:  #else
0282:  static inline void select_nohz_load_balancer(int stop_tick) { }
0283:  #endif
0284:  
0285:  /*
0286:   * Only dump TASK_* tasks. (0 for all tasks)
0287:   */
0288:  extern void show_state_filter(unsigned long state_filter);
0289:  
0290:  static inline void show_state(void)
0291:  {
0292:          show_state_filter(0);
0293:  }
0294:  
0295:  extern void show_regs(struct pt_regs *);
0296:  
0297:  /*
0298:   * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
0299:   * task), SP is the stack pointer of the first frame that should be shown in the back
0300:   * trace (or NULL if the entire call-chain of the task should be shown).
0301:   */
0302:  extern void show_stack(struct task_struct *task, unsigned long *sp);
0303:  
0304:  void io_schedule(void);
0305:  long io_schedule_timeout(long timeout);
0306:  
0307:  extern void cpu_init (void);
0308:  extern void trap_init(void);
0309:  extern void update_process_times(int user);
0310:  extern void scheduler_tick(void);
0311:  
0312:  extern void sched_show_task(struct task_struct *p);
0313:  
0314:  #ifdef CONFIG_LOCKUP_DETECTOR
0315:  extern void touch_softlockup_watchdog(void);
0316:  extern void touch_softlockup_watchdog_sync(void);
0317:  extern void touch_all_softlockup_watchdogs(void);
0318:  extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
0319:                                    void __user *buffer,
0320:                                    size_t *lenp, loff_t *ppos);
0321:  extern unsigned int  softlockup_panic;
0322:  void lockup_detector_init(void);
0323:  #else
0324:  static inline void touch_softlockup_watchdog(void)
0325:  {
0326:  }
0327:  static inline void touch_softlockup_watchdog_sync(void)
0328:  {
0329:  }
0330:  static inline void touch_all_softlockup_watchdogs(void)
0331:  {
0332:  }
0333:  static inline void lockup_detector_init(void)
0334:  {
0335:  }
0336:  #endif
0337:  
0338:  #ifdef CONFIG_DETECT_HUNG_TASK
0339:  extern unsigned int  sysctl_hung_task_panic;
0340:  extern unsigned long sysctl_hung_task_check_count;
0341:  extern unsigned long sysctl_hung_task_timeout_secs;
0342:  extern unsigned long sysctl_hung_task_warnings;
0343:  extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
0344:                                           void __user *buffer,
0345:                                           size_t *lenp, loff_t *ppos);
0346:  #else
0347:  /* Avoid need for ifdefs elsewhere in the code */
0348:  enum { sysctl_hung_task_timeout_secs = 0 };
0349:  #endif
0350:  
0351:  /* Attach to any functions which should be ignored in wchan output. */
0352:  #define __sched         __attribute__((__section__(".sched.text")))
0353:  
0354:  /* Linker adds these: start and end of __sched functions */
0355:  extern char __sched_text_start[], __sched_text_end[];
0356:  
0357:  /* Is this address in the __sched functions? */
0358:  extern int in_sched_functions(unsigned long addr);
0359:  
0360:  #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
0361:  extern signed long schedule_timeout(signed long timeout);
0362:  extern signed long schedule_timeout_interruptible(signed long timeout);
0363:  extern signed long schedule_timeout_killable(signed long timeout);
0364:  extern signed long schedule_timeout_uninterruptible(signed long timeout);
0365:  asmlinkage void schedule(void);
0366:  extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
0367:  
0368:  struct nsproxy;
0369:  struct user_namespace;
0370:  
0371:  /*
0372:   * Default maximum number of active map areas, this limits the number of vmas
0373:   * per mm struct. Users can overwrite this number by sysctl but there is a
0374:   * problem.
0375:   *
0376:   * When a program's coredump is generated as ELF format, a section is created
0377:   * per a vma. In ELF, the number of sections is represented in unsigned short.
0378:   * This means the number of sections should be smaller than 65535 at coredump.
0379:   * Because the kernel adds some informative sections to a image of program at
0380:   * generating coredump, we need some margin. The number of extra sections is
0381:   * 1-3 now and depends on arch. We use "5" as safe margin, here.
0382:   */
0383:  #define MAPCOUNT_ELF_CORE_MARGIN        (5)
0384:  #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
0385:  
0386:  extern int sysctl_max_map_count;
0387:  
0388:  #include <linux/aio.h>
0389:  
0390:  #ifdef CONFIG_MMU
0391:  extern void arch_pick_mmap_layout(struct mm_struct *mm);
0392:  extern unsigned long
0393:  arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
0394:                         unsigned long, unsigned long);
0395:  
0396:  extern unsigned long
0397:  arch_get_unmapped_exec_area(struct file *, unsigned long, unsigned long,
0398:                         unsigned long, unsigned long);
0399:  extern unsigned long
0400:  arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
0401:                            unsigned long len, unsigned long pgoff,
0402:                            unsigned long flags);
0403:  extern void arch_unmap_area(struct mm_struct *, unsigned long);
0404:  extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
0405:  #else
0406:  static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
0407:  #endif
0408:  
0409:  
0410:  extern void set_dumpable(struct mm_struct *mm, int value);
0411:  extern int get_dumpable(struct mm_struct *mm);
0412:  
0413:  /* mm flags */
0414:  /* dumpable bits */
0415:  #define MMF_DUMPABLE      0  /* core dump is permitted */
0416:  #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
0417:  
0418:  #define MMF_DUMPABLE_BITS 2
0419:  #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
0420:  
0421:  /* coredump filter bits */
0422:  #define MMF_DUMP_ANON_PRIVATE   2
0423:  #define MMF_DUMP_ANON_SHARED    3
0424:  #define MMF_DUMP_MAPPED_PRIVATE 4
0425:  #define MMF_DUMP_MAPPED_SHARED  5
0426:  #define MMF_DUMP_ELF_HEADERS    6
0427:  #define MMF_DUMP_HUGETLB_PRIVATE 7
0428:  #define MMF_DUMP_HUGETLB_SHARED  8
0429:  
0430:  #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
0431:  #define MMF_DUMP_FILTER_BITS    7
0432:  #define MMF_DUMP_FILTER_MASK \
0433:          (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
0434:  #define MMF_DUMP_FILTER_DEFAULT \
0435:          ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
0436:           (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
0437:  
0438:  #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
0439:  # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
0440:  #else
0441:  # define MMF_DUMP_MASK_DEFAULT_ELF      0
0442:  #endif
0443:                                          /* leave room for more dump flags */
0444:  #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
0445:  #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
0446:  
0447:  #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
0448:  
0449:  struct sighand_struct {
0450:          atomic_t                count;
0451:          struct k_sigaction      action[_NSIG];
0452:          spinlock_t              siglock;
0453:          wait_queue_head_t       signalfd_wqh;
0454:  };
0455:  
0456:  struct pacct_struct {
0457:          int                     ac_flag;
0458:          long                    ac_exitcode;
0459:          unsigned long           ac_mem;
0460:          cputime_t               ac_utime, ac_stime;
0461:          unsigned long           ac_minflt, ac_majflt;
0462:  };
0463:  
0464:  struct cpu_itimer {
0465:          cputime_t expires;
0466:          cputime_t incr;
0467:          u32 error;
0468:          u32 incr_error;
0469:  };
0470:  
0471:  /**
0472:   * struct task_cputime - collected CPU time counts
0473:   * @utime:              time spent in user mode, in &cputime_t units
0474:   * @stime:              time spent in kernel mode, in &cputime_t units
0475:   * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
0476:   *
0477:   * This structure groups together three kinds of CPU time that are
0478:   * tracked for threads and thread groups.  Most things considering
0479:   * CPU time want to group these counts together and treat all three
0480:   * of them in parallel.
0481:   */
0482:  struct task_cputime {
0483:          cputime_t utime;
0484:          cputime_t stime;
0485:          unsigned long long sum_exec_runtime;
0486:  };
0487:  /* Alternate field names when used to cache expirations. */
0488:  #define prof_exp        stime
0489:  #define virt_exp        utime
0490:  #define sched_exp       sum_exec_runtime
0491:  
0492:  #define INIT_CPUTIME    \
0493:          (struct task_cputime) {                                 \
0494:                  .utime = cputime_zero,                          \
0495:                  .stime = cputime_zero,                          \
0496:                  .sum_exec_runtime = 0,                          \
0497:          }
0498:  
0499:  /*
0500:   * Disable preemption until the scheduler is running.
0501:   * Reset by start_kernel()->sched_init()->init_idle().
0502:   *
0503:   * We include PREEMPT_ACTIVE to avoid cond_resched() from working
0504:   * before the scheduler is active -- see should_resched().
0505:   */
0506:  #define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
0507:  
0508:  /**
0509:   * struct thread_group_cputimer - thread group interval timer counts
0510:   * @cputime:            thread group interval timers.
0511:   * @running:            non-zero when there are timers running and
0512:   *                      @cputime receives updates.
0513:   * @lock:               lock for fields in this struct.
0514:   *
0515:   * This structure contains the version of task_cputime, above, that is
0516:   * used for thread group CPU timer calculations.
0517:   */
0518:  struct thread_group_cputimer {
0519:          struct task_cputime cputime;
0520:          int running;
0521:          raw_spinlock_t lock;
0522:  };
0523:  
0524:  #include <linux/rwsem.h>
0525:  struct autogroup;
0526:  
0527:  /*
0528:   * NOTE! "signal_struct" does not have its own
0529:   * locking, because a shared signal_struct always
0530:   * implies a shared sighand_struct, so locking
0531:   * sighand_struct is always a proper superset of
0532:   * the locking of signal_struct.
0533:   */
0534:  struct signal_struct {
0535:          atomic_t                sigcnt;
0536:          atomic_t                live;
0537:          int                     nr_threads;
0538:  
0539:          wait_queue_head_t       wait_chldexit;  /* for wait4() */
0540:  
0541:          /* current thread group signal load-balancing target: */
0542:          struct task_struct      *curr_target;
0543:  
0544:          /* shared signal handling: */
0545:          struct sigpending       shared_pending;
0546:  
0547:          /* thread group exit support */
0548:          int                     group_exit_code;
0549:          /* overloaded:
0550:           * - notify group_exit_task when ->count is equal to notify_count
0551:           * - everyone except group_exit_task is stopped during signal delivery
0552:           *   of fatal signals, group_exit_task processes the signal.
0553:           */
0554:          int                     notify_count;
0555:          struct task_struct      *group_exit_task;
0556:  
0557:          /* thread group stop support, overloads group_exit_code too */
0558:          int                     group_stop_count;
0559:          unsigned int            flags; /* see SIGNAL_* flags below */
0560:  
0561:          /* POSIX.1b Interval Timers */
0562:          struct list_head posix_timers;
0563:  
0564:          /* ITIMER_REAL timer for the process */
0565:          struct hrtimer real_timer;
0566:          struct pid *leader_pid;
0567:          ktime_t it_real_incr;
0568:  
0569:          /*
0570:           * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
0571:           * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
0572:           * values are defined to 0 and 1 respectively
0573:           */
0574:          struct cpu_itimer it[2];
0575:  
0576:          /*
0577:           * Thread group totals for process CPU timers.
0578:           * See thread_group_cputimer(), et al, for details.
0579:           */
0580:          struct thread_group_cputimer cputimer;
0581:  
0582:          /* Earliest-expiration cache. */
0583:          struct task_cputime cputime_expires;
0584:  
0585:          struct list_head cpu_timers[3];
0586:  
0587:          struct pid *tty_old_pgrp;
0588:  
0589:          /* boolean value for session group leader */
0590:          int leader;
0591:  
0592:          struct tty_struct *tty; /* NULL if no tty */
0593:  
0594:  #ifdef CONFIG_SCHED_AUTOGROUP
0595:          struct autogroup *autogroup;
0596:  #endif
0597:          /*
0598:           * Cumulative resource counters for dead threads in the group,
0599:           * and for reaped dead child processes forked by this group.
0600:           * Live threads maintain their own counters and add to these
0601:           * in __exit_signal, except for the group leader.
0602:           */
0603:          cputime_t utime, stime, cutime, cstime;
0604:          cputime_t gtime;
0605:          cputime_t cgtime;
0606:  #ifndef CONFIG_VIRT_CPU_ACCOUNTING
0607:          cputime_t prev_utime, prev_stime;
0608:  #endif
0609:          unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
0610:          unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
0611:          unsigned long inblock, oublock, cinblock, coublock;
0612:          unsigned long maxrss, cmaxrss;
0613:          struct task_io_accounting ioac;
0614:  
0615:          /*
0616:           * Cumulative ns of schedule CPU time fo dead threads in the
0617:           * group, not including a zombie group leader, (This only differs
0618:           * from jiffies_to_ns(utime + stime) if sched_clock uses something
0619:           * other than jiffies.)
0620:           */
0621:          unsigned long long sum_sched_runtime;
0622:  
0623:          /*
0624:           * We don't bother to synchronize most readers of this at all,
0625:           * because there is no reader checking a limit that actually needs
0626:           * to get both rlim_cur and rlim_max atomically, and either one
0627:           * alone is a single word that can safely be read normally.
0628:           * getrlimit/setrlimit use task_lock(current->group_leader) to
0629:           * protect this instead of the siglock, because they really
0630:           * have no need to disable irqs.
0631:           */
0632:          struct rlimit rlim[RLIM_NLIMITS];
0633:  
0634:  #ifdef CONFIG_BSD_PROCESS_ACCT
0635:          struct pacct_struct pacct;      /* per-process accounting information */
0636:  #endif
0637:  #ifdef CONFIG_TASKSTATS
0638:          struct taskstats *stats;
0639:  #endif
0640:  #ifdef CONFIG_AUDIT
0641:          unsigned audit_tty;
0642:          struct tty_audit_buf *tty_audit_buf;
0643:  #endif
0644:  #ifdef CONFIG_CGROUPS
0645:          /*
0646:           * The threadgroup_fork_lock prevents threads from forking with
0647:           * CLONE_THREAD while held for writing. Use this for fork-sensitive
0648:           * threadgroup-wide operations. It's taken for reading in fork.c in
0649:           * copy_process().
0650:           * Currently only needed write-side by cgroups.
0651:           */
0652:          struct rw_semaphore threadgroup_fork_lock;
0653:  #endif
0654:  
0655:          int oom_adj;            /* OOM kill score adjustment (bit shift) */
0656:          int oom_score_adj;      /* OOM kill score adjustment */
0657:          int oom_score_adj_min;  /* OOM kill score adjustment minimum value.
0658:                                   * Only settable by CAP_SYS_RESOURCE. */
0659:  
0660:          struct mutex cred_guard_mutex;  /* guard against foreign influences on
0661:                                           * credential calculations
0662:                                           * (notably. ptrace) */
0663:  };
0664:  
0665:  /* Context switch must be unlocked if interrupts are to be enabled */
0666:  #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
0667:  # define __ARCH_WANT_UNLOCKED_CTXSW
0668:  #endif
0669:  
0670:  /*
0671:   * Bits in flags field of signal_struct.
0672:   */
0673:  #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
0674:  #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
0675:  #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
0676:  /*
0677:   * Pending notifications to parent.
0678:   */
0679:  #define SIGNAL_CLD_STOPPED      0x00000010
0680:  #define SIGNAL_CLD_CONTINUED    0x00000020
0681:  #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
0682:  
0683:  #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
0684:  
0685:  /* If true, all threads except ->group_exit_task have pending SIGKILL */
0686:  static inline int signal_group_exit(const struct signal_struct *sig)
0687:  {
0688:          return  (sig->flags & SIGNAL_GROUP_EXIT) ||
0689:                  (sig->group_exit_task != NULL);
0690:  }
0691:  
0692:  /*
0693:   * Some day this will be a full-fledged user tracking system..
0694:   */
0695:  struct user_struct {
0696:          atomic_t __count;       /* reference count */
0697:          atomic_t processes;     /* How many processes does this user have? */
0698:          atomic_t files;         /* How many open files does this user have? */
0699:          atomic_t sigpending;    /* How many pending signals does this user have? */
0700:  #ifdef CONFIG_INOTIFY_USER
0701:          atomic_t inotify_watches; /* How many inotify watches does this user have? */
0702:          atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
0703:  #endif
0704:  #ifdef CONFIG_FANOTIFY
0705:          atomic_t fanotify_listeners;
0706:  #endif
0707:  #ifdef CONFIG_EPOLL
0708:          atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
0709:  #endif
0710:  #ifdef CONFIG_POSIX_MQUEUE
0711:          /* protected by mq_lock */
0712:          unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
0713:  #endif
0714:          unsigned long locked_shm; /* How many pages of mlocked shm ? */
0715:  
0716:  #ifdef CONFIG_KEYS
0717:          struct key *uid_keyring;        /* UID specific keyring */
0718:          struct key *session_keyring;    /* UID's default session keyring */
0719:  #endif
0720:  
0721:          /* Hash table maintenance information */
0722:          struct hlist_node uidhash_node;
0723:          uid_t uid;
0724:          struct user_namespace *user_ns;
0725:  
0726:  #ifdef CONFIG_PERF_EVENTS
0727:          atomic_long_t locked_vm;
0728:  #endif
0729:  };
0730:  
0731:  extern int uids_sysfs_init(void);
0732:  
0733:  extern struct user_struct *find_user(uid_t);
0734:  
0735:  extern struct user_struct root_user;
0736:  #define INIT_USER (&root_user)
0737:  
0738:  
0739:  struct backing_dev_info;
0740:  struct reclaim_state;
0741:  
0742:  #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
0743:  struct sched_info {
0744:          /* cumulative counters */
0745:          unsigned long pcount;         /* # of times run on this cpu */
0746:          unsigned long long run_delay; /* time spent waiting on a runqueue */
0747:  
0748:          /* timestamps */
0749:          unsigned long long last_arrival,/* when we last ran on a cpu */
0750:                             last_queued; /* when we were last queued to run */
0751:  };
0752:  #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
0753:  
0754:  #ifdef CONFIG_TASK_DELAY_ACCT
0755:  struct task_delay_info {
0756:          spinlock_t      lock;
0757:          unsigned int    flags;  /* Private per-task flags */
0758:  
0759:          /* For each stat XXX, add following, aligned appropriately
0760:           *
0761:           * struct timespec XXX_start, XXX_end;
0762:           * u64 XXX_delay;
0763:           * u32 XXX_count;
0764:           *
0765:           * Atomicity of updates to XXX_delay, XXX_count protected by
0766:           * single lock above (split into XXX_lock if contention is an issue).
0767:           */
0768:  
0769:          /*
0770:           * XXX_count is incremented on every XXX operation, the delay
0771:           * associated with the operation is added to XXX_delay.
0772:           * XXX_delay contains the accumulated delay time in nanoseconds.
0773:           */
0774:          struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
0775:          u64 blkio_delay;        /* wait for sync block io completion */
0776:          u64 swapin_delay;       /* wait for swapin block io completion */
0777:          u32 blkio_count;        /* total count of the number of sync block */
0778:                                  /* io operations performed */
0779:          u32 swapin_count;       /* total count of the number of swapin block */
0780:                                  /* io operations performed */
0781:  
0782:          struct timespec freepages_start, freepages_end;
0783:          u64 freepages_delay;    /* wait for memory reclaim */
0784:          u32 freepages_count;    /* total count of memory reclaim */
0785:  };
0786:  #endif  /* CONFIG_TASK_DELAY_ACCT */
0787:  
0788:  static inline int sched_info_on(void)
0789:  {
0790:  #ifdef CONFIG_SCHEDSTATS
0791:          return 1;
0792:  #elif defined(CONFIG_TASK_DELAY_ACCT)
0793:          extern int delayacct_on;
0794:          return delayacct_on;
0795:  #else
0796:          return 0;
0797:  #endif
0798:  }
0799:  
0800:  enum cpu_idle_type {
0801:          CPU_IDLE,
0802:          CPU_NOT_IDLE,
0803:          CPU_NEWLY_IDLE,
0804:          CPU_MAX_IDLE_TYPES
0805:  };
0806:  
0807:  /*
0808:   * Increase resolution of nice-level calculations for 64-bit architectures.
0809:   * The extra resolution improves shares distribution and load balancing of
0810:   * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
0811:   * hierarchies, especially on larger systems. This is not a user-visible change
0812:   * and does not change the user-interface for setting shares/weights.
0813:   *
0814:   * We increase resolution only if we have enough bits to allow this increased
0815:   * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
0816:   * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
0817:   * increased costs.
0818:   */
0819:  #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
0820:  # define SCHED_LOAD_RESOLUTION  10
0821:  # define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
0822:  # define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
0823:  #else
0824:  # define SCHED_LOAD_RESOLUTION  0
0825:  # define scale_load(w)          (w)
0826:  # define scale_load_down(w)     (w)
0827:  #endif
0828:  
0829:  #define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
0830:  #define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
0831:  
0832:  /*
0833:   * Increase resolution of cpu_power calculations
0834:   */
0835:  #define SCHED_POWER_SHIFT       10
0836:  #define SCHED_POWER_SCALE       (1L << SCHED_POWER_SHIFT)
0837:  
0838:  /*
0839:   * sched-domains (multiprocessor balancing) declarations:
0840:   */
0841:  #ifdef CONFIG_SMP
0842:  #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
0843:  #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
0844:  #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
0845:  #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
0846:  #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
0847:  #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
0848:  #define SD_PREFER_LOCAL         0x0040  /* Prefer to keep tasks local to this domain */
0849:  #define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
0850:  #define SD_POWERSAVINGS_BALANCE 0x0100  /* Balance for power savings */
0851:  #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
0852:  #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
0853:  #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
0854:  #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
0855:  #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
0856:  
0857:  enum powersavings_balance_level {
0858:          POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
0859:          POWERSAVINGS_BALANCE_BASIC,     /* Fill one thread/core/package
0860:                                           * first for long running threads
0861:                                           */
0862:          POWERSAVINGS_BALANCE_WAKEUP,    /* Also bias task wakeups to semi-idle
0863:                                           * cpu package for power savings
0864:                                           */
0865:          MAX_POWERSAVINGS_BALANCE_LEVELS
0866:  };
0867:  
0868:  extern int sched_mc_power_savings, sched_smt_power_savings;
0869:  
0870:  static inline int sd_balance_for_mc_power(void)
0871:  {
0872:          if (sched_smt_power_savings)
0873:                  return SD_POWERSAVINGS_BALANCE;
0874:  
0875:          if (!sched_mc_power_savings)
0876:                  return SD_PREFER_SIBLING;
0877:  
0878:          return 0;
0879:  }
0880:  
0881:  static inline int sd_balance_for_package_power(void)
0882:  {
0883:          if (sched_mc_power_savings | sched_smt_power_savings)
0884:                  return SD_POWERSAVINGS_BALANCE;
0885:  
0886:          return SD_PREFER_SIBLING;
0887:  }
0888:  
0889:  extern int __weak arch_sd_sibiling_asym_packing(void);
0890:  
0891:  /*
0892:   * Optimise SD flags for power savings:
0893:   * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
0894:   * Keep default SD flags if sched_{smt,mc}_power_saving=0
0895:   */
0896:  
0897:  static inline int sd_power_saving_flags(void)
0898:  {
0899:          if (sched_mc_power_savings | sched_smt_power_savings)
0900:                  return SD_BALANCE_NEWIDLE;
0901:  
0902:          return 0;
0903:  }
0904:  
0905:  struct sched_group_power {
0906:          atomic_t ref;
0907:          /*
0908:           * CPU power of this group, SCHED_LOAD_SCALE being max power for a
0909:           * single CPU.
0910:           */
0911:          unsigned int power, power_orig;
0912:  };
0913:  
0914:  struct sched_group {
0915:          struct sched_group *next;       /* Must be a circular list */
0916:          atomic_t ref;
0917:  
0918:          unsigned int group_weight;
0919:          struct sched_group_power *sgp;
0920:  
0921:          /*
0922:           * The CPUs this group covers.
0923:           *
0924:           * NOTE: this field is variable length. (Allocated dynamically
0925:           * by attaching extra space to the end of the structure,
0926:           * depending on how many CPUs the kernel has booted up with)
0927:           */
0928:          unsigned long cpumask[0];
0929:  };
0930:  
0931:  static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
0932:  {
0933:          return to_cpumask(sg->cpumask);
0934:  }
0935:  
0936:  struct sched_domain_attr {
0937:          int relax_domain_level;
0938:  };
0939:  
0940:  #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
0941:          .relax_domain_level = -1,                       \
0942:  }
0943:  
0944:  extern int sched_domain_level_max;
0945:  
0946:  struct sched_domain {
0947:          /* These fields must be setup */
0948:          struct sched_domain *parent;    /* top domain must be null terminated */
0949:          struct sched_domain *child;     /* bottom domain must be null terminated */
0950:          struct sched_group *groups;     /* the balancing groups of the domain */
0951:          unsigned long min_interval;     /* Minimum balance interval ms */
0952:          unsigned long max_interval;     /* Maximum balance interval ms */
0953:          unsigned int busy_factor;       /* less balancing by factor if busy */
0954:          unsigned int imbalance_pct;     /* No balance until over watermark */
0955:          unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
0956:          unsigned int busy_idx;
0957:          unsigned int idle_idx;
0958:          unsigned int newidle_idx;
0959:          unsigned int wake_idx;
0960:          unsigned int forkexec_idx;
0961:          unsigned int smt_gain;
0962:          int flags;                      /* See SD_* */
0963:          int level;
0964:  
0965:          /* Runtime fields. */
0966:          unsigned long last_balance;     /* init to jiffies. units in jiffies */
0967:          unsigned int balance_interval;  /* initialise to 1. units in ms. */
0968:          unsigned int nr_balance_failed; /* initialise to 0 */
0969:  
0970:          u64 last_update;
0971:  
0972:  #ifdef CONFIG_SCHEDSTATS
0973:          /* load_balance() stats */
0974:          unsigned int lb_count[CPU_MAX_IDLE_TYPES];
0975:          unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
0976:          unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
0977:          unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
0978:          unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
0979:          unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
0980:          unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
0981:          unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
0982:  
0983:          /* Active load balancing */
0984:          unsigned int alb_count;
0985:          unsigned int alb_failed;
0986:          unsigned int alb_pushed;
0987:  
0988:          /* SD_BALANCE_EXEC stats */
0989:          unsigned int sbe_count;
0990:          unsigned int sbe_balanced;
0991:          unsigned int sbe_pushed;
0992:  
0993:          /* SD_BALANCE_FORK stats */
0994:          unsigned int sbf_count;
0995:          unsigned int sbf_balanced;
0996:          unsigned int sbf_pushed;
0997:  
0998:          /* try_to_wake_up() stats */
0999:          unsigned int ttwu_wake_remote;
1000:          unsigned int ttwu_move_affine;
1001:          unsigned int ttwu_move_balance;
1002:  #endif
1003:  #ifdef CONFIG_SCHED_DEBUG
1004:          char *name;
1005:  #endif
1006:          union {
1007:                  void *private;          /* used during construction */
1008:                  struct rcu_head rcu;    /* used during destruction */
1009:          };
1010:  
1011:          unsigned int span_weight;
1012:          /*
1013:           * Span of all CPUs in this domain.
1014:           *
1015:           * NOTE: this field is variable length. (Allocated dynamically
1016:           * by attaching extra space to the end of the structure,
1017:           * depending on how many CPUs the kernel has booted up with)
1018:           */
1019:          unsigned long span[0];
1020:  };
1021:  
1022:  static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1023:  {
1024:          return to_cpumask(sd->span);
1025:  }
1026:  
1027:  extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1028:                                      struct sched_domain_attr *dattr_new);
1029:  
1030:  /* Allocate an array of sched domains, for partition_sched_domains(). */
1031:  cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1032:  void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1033:  
1034:  /* Test a flag in parent sched domain */
1035:  static inline int test_sd_parent(struct sched_domain *sd, int flag)
1036:  {
1037:          if (sd->parent && (sd->parent->flags & flag))
1038:                  return 1;
1039:  
1040:          return 0;
1041:  }
1042:  
1043:  unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1044:  unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1045:  
1046:  #else /* CONFIG_SMP */
1047:  
1048:  struct sched_domain_attr;
1049:  
1050:  static inline void
1051:  partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1052:                          struct sched_domain_attr *dattr_new)
1053:  {
1054:  }
1055:  #endif  /* !CONFIG_SMP */
1056:  
1057:  
1058:  struct io_context;                      /* See blkdev.h */
1059:  
1060:  
1061:  #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1062:  extern void prefetch_stack(struct task_struct *t);
1063:  #else
1064:  static inline void prefetch_stack(struct task_struct *t) { }
1065:  #endif
1066:  
1067:  struct audit_context;           /* See audit.c */
1068:  struct mempolicy;
1069:  struct pipe_inode_info;
1070:  struct uts_namespace;
1071:  
1072:  struct rq;
1073:  struct sched_domain;
1074:  
1075:  /*
1076:   * wake flags
1077:   */
1078:  #define WF_SYNC         0x01            /* waker goes to sleep after wakup */
1079:  #define WF_FORK         0x02            /* child wakeup after fork */
1080:  #define WF_MIGRATED     0x04            /* internal use, task got migrated */
1081:  
1082:  #define ENQUEUE_WAKEUP          1
1083:  #define ENQUEUE_HEAD            2
1084:  #ifdef CONFIG_SMP
1085:  #define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
1086:  #else
1087:  #define ENQUEUE_WAKING          0
1088:  #endif
1089:  
1090:  #define DEQUEUE_SLEEP           1
1091:  
1092:  struct sched_class {
1093:          const struct sched_class *next;
1094:  
1095:          void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1096:          void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1097:          void (*yield_task) (struct rq *rq);
1098:          bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1099:  
1100:          void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1101:  
1102:          struct task_struct * (*pick_next_task) (struct rq *rq);
1103:          void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1104:  
1105:  #ifdef CONFIG_SMP
1106:          int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1107:  
1108:          void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1109:          void (*post_schedule) (struct rq *this_rq);
1110:          void (*task_waking) (struct task_struct *task);
1111:          void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1112:  
1113:          void (*set_cpus_allowed)(struct task_struct *p,
1114:                                   const struct cpumask *newmask);
1115:  
1116:          void (*rq_online)(struct rq *rq);
1117:          void (*rq_offline)(struct rq *rq);
1118:  #endif
1119:  
1120:          void (*set_curr_task) (struct rq *rq);
1121:          void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1122:          void (*task_fork) (struct task_struct *p);
1123:  
1124:          void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1125:          void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1126:          void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1127:                               int oldprio);
1128:  
1129:          unsigned int (*get_rr_interval) (struct rq *rq,
1130:                                           struct task_struct *task);
1131:  
1132:  #ifdef CONFIG_FAIR_GROUP_SCHED
1133:          void (*task_move_group) (struct task_struct *p, int on_rq);
1134:  #endif
1135:  };
1136:  
1137:  struct load_weight {
1138:          unsigned long weight, inv_weight;
1139:  };
1140:  
1141:  #ifdef CONFIG_SCHEDSTATS
1142:  struct sched_statistics {
1143:          u64                     wait_start;
1144:          u64                     wait_max;
1145:          u64                     wait_count;
1146:          u64                     wait_sum;
1147:          u64                     iowait_count;
1148:          u64                     iowait_sum;
1149:  
1150:          u64                     sleep_start;
1151:          u64                     sleep_max;
1152:          s64                     sum_sleep_runtime;
1153:  
1154:          u64                     block_start;
1155:          u64                     block_max;
1156:          u64                     exec_max;
1157:          u64                     slice_max;
1158:  
1159:          u64                     nr_migrations_cold;
1160:          u64                     nr_failed_migrations_affine;
1161:          u64                     nr_failed_migrations_running;
1162:          u64                     nr_failed_migrations_hot;
1163:          u64                     nr_forced_migrations;
1164:  
1165:          u64                     nr_wakeups;
1166:          u64                     nr_wakeups_sync;
1167:          u64                     nr_wakeups_migrate;
1168:          u64                     nr_wakeups_local;
1169:          u64                     nr_wakeups_remote;
1170:          u64                     nr_wakeups_affine;
1171:          u64                     nr_wakeups_affine_attempts;
1172:          u64                     nr_wakeups_passive;
1173:          u64                     nr_wakeups_idle;
1174:  };
1175:  #endif
1176:  
1177:  struct sched_entity {
1178:          struct load_weight      load;           /* for load-balancing */
1179:          struct rb_node          run_node;
1180:          struct list_head        group_node;
1181:          unsigned int            on_rq;
1182:  
1183:          u64                     exec_start;
1184:          u64                     sum_exec_runtime;
1185:          u64                     vruntime;
1186:          u64                     prev_sum_exec_runtime;
1187:  
1188:          u64                     nr_migrations;
1189:  
1190:  #ifdef CONFIG_SCHEDSTATS
1191:          struct sched_statistics statistics;
1192:  #endif
1193:  
1194:  #ifdef CONFIG_FAIR_GROUP_SCHED
1195:          struct sched_entity     *parent;
1196:          /* rq on which this entity is (to be) queued: */
1197:          struct cfs_rq           *cfs_rq;
1198:          /* rq "owned" by this entity/group: */
1199:          struct cfs_rq           *my_q;
1200:  #endif
1201:  };
1202:  
1203:  struct sched_rt_entity {
1204:          struct list_head run_list;
1205:          unsigned long timeout;
1206:          unsigned int time_slice;
1207:          int nr_cpus_allowed;
1208:  
1209:          struct sched_rt_entity *back;
1210:  #ifdef CONFIG_RT_GROUP_SCHED
1211:          struct sched_rt_entity  *parent;
1212:          /* rq on which this entity is (to be) queued: */
1213:          struct rt_rq            *rt_rq;
1214:          /* rq "owned" by this entity/group: */
1215:          struct rt_rq            *my_q;
1216:  #endif
1217:  };
1218:  
1219:  struct rcu_node;
1220:  
1221:  enum perf_event_task_context {
1222:          perf_invalid_context = -1,
1223:          perf_hw_context = 0,
1224:          perf_sw_context,
1225:          perf_nr_task_contexts,
1226:  };
1227:  
1228:  struct task_struct {
1229:          volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1230:          void *stack;
1231:          atomic_t usage;
1232:          unsigned int flags;     /* per process flags, defined below */
1233:          unsigned int ptrace;
1234:  
1235:  #ifdef CONFIG_SMP
1236:          struct llist_node wake_entry;
1237:          int on_cpu;
1238:  #endif
1239:          int on_rq;
1240:  
1241:          int prio, static_prio, normal_prio;
1242:          unsigned int rt_priority;
1243:          const struct sched_class *sched_class;
1244:          struct sched_entity se;
1245:          struct sched_rt_entity rt;
1246:  #ifdef CONFIG_CGROUP_SCHED
1247:          struct task_group *sched_task_group;
1248:  #endif
1249:  
1250:  #ifdef CONFIG_PREEMPT_NOTIFIERS
1251:          /* list of struct preempt_notifier: */
1252:          struct hlist_head preempt_notifiers;
1253:  #endif
1254:  
1255:          /*
1256:           * fpu_counter contains the number of consecutive context switches
1257:           * that the FPU is used. If this is over a threshold, the lazy fpu
1258:           * saving becomes unlazy to save the trap. This is an unsigned char
1259:           * so that after 256 times the counter wraps and the behavior turns
1260:           * lazy again; this to deal with bursty apps that only use FPU for
1261:           * a short time
1262:           */
1263:          unsigned char fpu_counter;
1264:  #ifdef CONFIG_BLK_DEV_IO_TRACE
1265:          unsigned int btrace_seq;
1266:  #endif
1267:  
1268:          unsigned int policy;
1269:          cpumask_t cpus_allowed;
1270:  
1271:  #ifdef CONFIG_PREEMPT_RCU
1272:          int rcu_read_lock_nesting;
1273:          char rcu_read_unlock_special;
1274:          struct list_head rcu_node_entry;
1275:  #endif /* #ifdef CONFIG_PREEMPT_RCU */
1276:  #ifdef CONFIG_TREE_PREEMPT_RCU
1277:          struct rcu_node *rcu_blocked_node;
1278:  #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1279:  #ifdef CONFIG_RCU_BOOST
1280:          struct rt_mutex *rcu_boost_mutex;
1281:  #endif /* #ifdef CONFIG_RCU_BOOST */
1282:  
1283:  #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1284:          struct sched_info sched_info;
1285:  #endif
1286:  
1287:          struct list_head tasks;
1288:  #ifdef CONFIG_SMP
1289:          struct plist_node pushable_tasks;
1290:  #endif
1291:  
1292:          struct mm_struct *mm, *active_mm;
1293:  #ifdef CONFIG_COMPAT_BRK
1294:          unsigned brk_randomized:1;
1295:  #endif
1296:  #if defined(SPLIT_RSS_COUNTING)
1297:          struct task_rss_stat    rss_stat;
1298:  #endif
1299:  /* task state */
1300:          int exit_state;
1301:          int exit_code, exit_signal;
1302:          int pdeath_signal;  /*  The signal sent when the parent dies  */
1303:          unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1304:          /* ??? */
1305:          unsigned int personality;
1306:          unsigned did_exec:1;
1307:          unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1308:                                   * execve */
1309:          unsigned in_iowait:1;
1310:  
1311:          /* task may not gain privileges */
1312:          unsigned no_new_privs:1;
1313:  
1314:          /* Revert to default priority/policy when forking */
1315:          unsigned sched_reset_on_fork:1;
1316:          unsigned sched_contributes_to_load:1;
1317:  
1318:          pid_t pid;
1319:          pid_t tgid;
1320:  
1321:  #ifdef CONFIG_CC_STACKPROTECTOR
1322:          /* Canary value for the -fstack-protector gcc feature */
1323:          unsigned long stack_canary;
1324:  #endif
1325:  
1326:          /* 
1327:           * pointers to (original) parent process, youngest child, younger sibling,
1328:           * older sibling, respectively.  (p->father can be replaced with 
1329:           * p->real_parent->pid)
1330:           */
1331:          struct task_struct *real_parent; /* real parent process */
1332:          struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1333:          /*
1334:           * children/sibling forms the list of my natural children
1335:           */
1336:          struct list_head children;      /* list of my children */
1337:          struct list_head sibling;       /* linkage in my parent's children list */
1338:          struct task_struct *group_leader;       /* threadgroup leader */
1339:  
1340:          /*
1341:           * ptraced is the list of tasks this task is using ptrace on.
1342:           * This includes both natural children and PTRACE_ATTACH targets.
1343:           * p->ptrace_entry is p's link on the p->parent->ptraced list.
1344:           */
1345:          struct list_head ptraced;
1346:          struct list_head ptrace_entry;
1347:  
1348:          /* PID/PID hash table linkage. */
1349:          struct pid_link pids[PIDTYPE_MAX];
1350:          struct list_head thread_group;
1351:  
1352:          struct completion *vfork_done;          /* for vfork() */
1353:          int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1354:          int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1355:  
1356:          cputime_t utime, stime, utimescaled, stimescaled;
1357:          cputime_t gtime;
1358:  #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1359:          cputime_t prev_utime, prev_stime;
1360:  #endif
1361:          unsigned long nvcsw, nivcsw; /* context switch counts */
1362:          struct timespec start_time;             /* monotonic time */
1363:          struct timespec real_start_time;        /* boot based time */
1364:  /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1365:          unsigned long min_flt, maj_flt;
1366:  
1367:          struct task_cputime cputime_expires;
1368:          struct list_head cpu_timers[3];
1369:  
1370:  /* process credentials */
1371:          const struct cred __rcu *real_cred; /* objective and real subjective task
1372:                                           * credentials (COW) */
1373:          const struct cred __rcu *cred;  /* effective (overridable) subjective task
1374:                                           * credentials (COW) */
1375:          struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1376:  
1377:          char comm[TASK_COMM_LEN]; /* executable name excluding path
1378:                                       - access with [gs]et_task_comm (which lock
1379:                                         it with task_lock())
1380:                                       - initialized normally by setup_new_exec */
1381:  /* file system info */
1382:          int link_count, total_link_count;
1383:  #ifdef CONFIG_SYSVIPC
1384:  /* ipc stuff */
1385:          struct sysv_sem sysvsem;
1386:  #endif
1387:  #ifdef CONFIG_DETECT_HUNG_TASK
1388:  /* hung task detection */
1389:          unsigned long last_switch_count;
1390:  #endif
1391:  /* CPU-specific state of this task */
1392:          struct thread_struct thread;
1393:  /* filesystem information */
1394:          struct fs_struct *fs;
1395:  /* open file information */
1396:          struct files_struct *files;
1397:  /* namespaces */
1398:          struct nsproxy *nsproxy;
1399:  /* signal handlers */
1400:          struct signal_struct *signal;
1401:          struct sighand_struct *sighand;
1402:  
1403:          sigset_t blocked, real_blocked;
1404:          sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1405:          struct sigpending pending;
1406:  
1407:          unsigned long sas_ss_sp;
1408:          size_t sas_ss_size;
1409:          int (*notifier)(void *priv);
1410:          void *notifier_data;
1411:          sigset_t *notifier_mask;
1412:          struct audit_context *audit_context;
1413:  #ifdef CONFIG_AUDITSYSCALL
1414:          uid_t loginuid;
1415:          unsigned int sessionid;
1416:  #endif
1417:          struct seccomp seccomp;
1418:  
1419:  /* Thread group tracking */
1420:          u32 parent_exec_id;
1421:          u32 self_exec_id;
1422:  /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1423:   * mempolicy */
1424:          spinlock_t alloc_lock;
1425:  
1426:  #ifdef CONFIG_GENERIC_HARDIRQS
1427:          /* IRQ handler threads */
1428:          struct irqaction *irqaction;
1429:  #endif
1430:  
1431:          /* Protection of the PI data structures: */
1432:          raw_spinlock_t pi_lock;
1433:  
1434:  #ifdef CONFIG_RT_MUTEXES
1435:          /* PI waiters blocked on a rt_mutex held by this task */
1436:          struct plist_head pi_waiters;
1437:          /* Deadlock detection and priority inheritance handling */
1438:          struct rt_mutex_waiter *pi_blocked_on;
1439:  #endif
1440:  
1441:  #ifdef CONFIG_DEBUG_MUTEXES
1442:          /* mutex deadlock detection */
1443:          struct mutex_waiter *blocked_on;
1444:  #endif
1445:  #ifdef CONFIG_TRACE_IRQFLAGS
1446:          unsigned int irq_events;
1447:          unsigned long hardirq_enable_ip;
1448:          unsigned long hardirq_disable_ip;
1449:          unsigned int hardirq_enable_event;
1450:          unsigned int hardirq_disable_event;
1451:          int hardirqs_enabled;
1452:          int hardirq_context;
1453:          unsigned long softirq_disable_ip;
1454:          unsigned long softirq_enable_ip;
1455:          unsigned int softirq_disable_event;
1456:          unsigned int softirq_enable_event;
1457:          int softirqs_enabled;
1458:          int softirq_context;
1459:  #endif
1460:  #ifdef CONFIG_LOCKDEP
1461:  # define MAX_LOCK_DEPTH 48UL
1462:          u64 curr_chain_key;
1463:          int lockdep_depth;
1464:          unsigned int lockdep_recursion;
1465:          struct held_lock held_locks[MAX_LOCK_DEPTH];
1466:          gfp_t lockdep_reclaim_gfp;
1467:  #endif
1468:  
1469:  /* journalling filesystem info */
1470:          void *journal_info;
1471:  
1472:  /* stacked block device info */
1473:          struct bio_list *bio_list;
1474:  
1475:  #ifdef CONFIG_BLOCK
1476:  /* stack plugging */
1477:          struct blk_plug *plug;
1478:  #endif
1479:  
1480:  /* VM state */
1481:          struct reclaim_state *reclaim_state;
1482:  
1483:          struct backing_dev_info *backing_dev_info;
1484:  
1485:          struct io_context *io_context;
1486:  
1487:          unsigned long ptrace_message;
1488:          siginfo_t *last_siginfo; /* For ptrace use.  */
1489:          struct task_io_accounting ioac;
1490:  #if defined(CONFIG_TASK_XACCT)
1491:          u64 acct_rss_mem1;      /* accumulated rss usage */
1492:          u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1493:          cputime_t acct_timexpd; /* stime + utime since last update */
1494:  #endif
1495:  #ifdef CONFIG_CPUSETS
1496:          nodemask_t mems_allowed;        /* Protected by alloc_lock */
1497:          seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1498:          int cpuset_mem_spread_rotor;
1499:          int cpuset_slab_spread_rotor;
1500:  #endif
1501:  #ifdef CONFIG_CGROUPS
1502:          /* Control Group info protected by css_set_lock */
1503:          struct css_set __rcu *cgroups;
1504:          /* cg_list protected by css_set_lock and tsk->alloc_lock */
1505:          struct list_head cg_list;
1506:  #endif
1507:  #ifdef CONFIG_FUTEX
1508:          struct robust_list_head __user *robust_list;
1509:  #ifdef CONFIG_COMPAT
1510:          struct compat_robust_list_head __user *compat_robust_list;
1511:  #endif
1512:          struct list_head pi_state_list;
1513:          struct futex_pi_state *pi_state_cache;
1514:  #endif
1515:  #ifdef CONFIG_PERF_EVENTS
1516:          struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1517:          struct mutex perf_event_mutex;
1518:          struct list_head perf_event_list;
1519:  #endif
1520:  #ifdef CONFIG_NUMA
1521:          struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1522:          short il_next;
1523:          short pref_node_fork;
1524:  #endif
1525:          struct rcu_head rcu;
1526:  
1527:          /*
1528:           * cache last used pipe for splice
1529:           */
1530:          struct pipe_inode_info *splice_pipe;
1531:  #ifdef  CONFIG_TASK_DELAY_ACCT
1532:          struct task_delay_info *delays;
1533:  #endif
1534:  #ifdef CONFIG_FAULT_INJECTION
1535:          int make_it_fail;
1536:  #endif
1537:          /*
1538:           * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1539:           * balance_dirty_pages() for some dirty throttling pause
1540:           */
1541:          int nr_dirtied;
1542:          int nr_dirtied_pause;
1543:  
1544:  #ifdef CONFIG_LATENCYTOP
1545:          int latency_record_count;
1546:          struct latency_record latency_record[LT_SAVECOUNT];
1547:  #endif
1548:          /*
1549:           * time slack values; these are used to round up poll() and
1550:           * select() etc timeout values. These are in nanoseconds.
1551:           */
1552:          unsigned long timer_slack_ns;
1553:          unsigned long default_timer_slack_ns;
1554:  
1555:          struct list_head        *scm_work_list;
1556:  #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1557:          /* Index of current stored address in ret_stack */
1558:          int curr_ret_stack;
1559:          /* Stack of return addresses for return function tracing */
1560:          struct ftrace_ret_stack *ret_stack;
1561:          /* time stamp for last schedule */
1562:          unsigned long long ftrace_timestamp;
1563:          /*
1564:           * Number of functions that haven't been traced
1565:           * because of depth overrun.
1566:           */
1567:          atomic_t trace_overrun;
1568:          /* Pause for the tracing */
1569:          atomic_t tracing_graph_pause;
1570:  #endif
1571:  #ifdef CONFIG_TRACING
1572:          /* state flags for use by tracers */
1573:          unsigned long trace;
1574:          /* bitmask and counter of trace recursion */
1575:          unsigned long trace_recursion;
1576:  #endif /* CONFIG_TRACING */
1577:  #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1578:          struct memcg_batch_info {
1579:                  int do_batch;   /* incremented when batch uncharge started */
1580:                  struct mem_cgroup *memcg; /* target memcg of uncharge */
1581:                  unsigned long nr_pages; /* uncharged usage */
1582:                  unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1583:          } memcg_batch;
1584:  #endif
1585:  #ifdef CONFIG_HAVE_HW_BREAKPOINT
1586:          atomic_t ptrace_bp_refcnt;
1587:  #endif
1588:  };
1589:  
1590:  /* Future-safe accessor for struct task_struct's cpus_allowed. */
1591:  #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1592:  
1593:  /*
1594:   * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1595:   * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1596:   * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1597:   * values are inverted: lower p->prio value means higher priority.
1598:   *
1599:   * The MAX_USER_RT_PRIO value allows the actual maximum
1600:   * RT priority to be separate from the value exported to
1601:   * user-space.  This allows kernel threads to set their
1602:   * priority to a value higher than any user task. Note:
1603:   * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1604:   */
1605:  
1606:  #define MAX_USER_RT_PRIO        100
1607:  #define MAX_RT_PRIO             MAX_USER_RT_PRIO
1608:  
1609:  #define MAX_PRIO                (MAX_RT_PRIO + 40)
1610:  #define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1611:  
1612:  static inline int rt_prio(int prio)
1613:  {
1614:          if (unlikely(prio < MAX_RT_PRIO))
1615:                  return 1;
1616:          return 0;
1617:  }
1618:  
1619:  static inline int rt_task(struct task_struct *p)
1620:  {
1621:          return rt_prio(p->prio);
1622:  }
1623:  
1624:  static inline struct pid *task_pid(struct task_struct *task)
1625:  {
1626:          return task->pids[PIDTYPE_PID].pid;
1627:  }
1628:  
1629:  static inline struct pid *task_tgid(struct task_struct *task)
1630:  {
1631:          return task->group_leader->pids[PIDTYPE_PID].pid;
1632:  }
1633:  
1634:  /*
1635:   * Without tasklist or rcu lock it is not safe to dereference
1636:   * the result of task_pgrp/task_session even if task == current,
1637:   * we can race with another thread doing sys_setsid/sys_setpgid.
1638:   */
1639:  static inline struct pid *task_pgrp(struct task_struct *task)
1640:  {
1641:          return task->group_leader->pids[PIDTYPE_PGID].pid;
1642:  }
1643:  
1644:  static inline struct pid *task_session(struct task_struct *task)
1645:  {
1646:          return task->group_leader->pids[PIDTYPE_SID].pid;
1647:  }
1648:  
1649:  struct pid_namespace;
1650:  
1651:  /*
1652:   * the helpers to get the task's different pids as they are seen
1653:   * from various namespaces
1654:   *
1655:   * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1656:   * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1657:   *                     current.
1658:   * task_xid_nr_ns()  : id seen from the ns specified;
1659:   *
1660:   * set_task_vxid()   : assigns a virtual id to a task;
1661:   *
1662:   * see also pid_nr() etc in include/linux/pid.h
1663:   */
1664:  pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1665:                          struct pid_namespace *ns);
1666:  
1667:  static inline pid_t task_pid_nr(struct task_struct *tsk)
1668:  {
1669:          return tsk->pid;
1670:  }
1671:  
1672:  static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1673:                                          struct pid_namespace *ns)
1674:  {
1675:          return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1676:  }
1677:  
1678:  static inline pid_t task_pid_vnr(struct task_struct *tsk)
1679:  {
1680:          return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1681:  }
1682:  
1683:  
1684:  static inline pid_t task_tgid_nr(struct task_struct *tsk)
1685:  {
1686:          return tsk->tgid;
1687:  }
1688:  
1689:  pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1690:  
1691:  static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1692:  {
1693:          return pid_vnr(task_tgid(tsk));
1694:  }
1695:  
1696:  
1697:  static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1698:                                          struct pid_namespace *ns)
1699:  {
1700:          return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1701:  }
1702:  
1703:  static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1704:  {
1705:          return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1706:  }
1707:  
1708:  
1709:  static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1710:                                          struct pid_namespace *ns)
1711:  {
1712:          return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1713:  }
1714:  
1715:  static inline pid_t task_session_vnr(struct task_struct *tsk)
1716:  {
1717:          return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1718:  }
1719:  
1720:  /* obsolete, do not use */
1721:  static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1722:  {
1723:          return task_pgrp_nr_ns(tsk, &init_pid_ns);
1724:  }
1725:  
1726:  /**
1727:   * pid_alive - check that a task structure is not stale
1728:   * @p: Task structure to be checked.
1729:   *
1730:   * Test if a process is not yet dead (at most zombie state)
1731:   * If pid_alive fails, then pointers within the task structure
1732:   * can be stale and must not be dereferenced.
1733:   */
1734:  static inline int pid_alive(struct task_struct *p)
1735:  {
1736:          return p->pids[PIDTYPE_PID].pid != NULL;
1737:  }
1738:  
1739:  /**
1740:   * is_global_init - check if a task structure is init
1741:   * @tsk: Task structure to be checked.
1742:   *
1743:   * Check if a task structure is the first user space task the kernel created.
1744:   */
1745:  static inline int is_global_init(struct task_struct *tsk)
1746:  {
1747:          return tsk->pid == 1;
1748:  }
1749:  
1750:  /*
1751:   * is_container_init:
1752:   * check whether in the task is init in its own pid namespace.
1753:   */
1754:  extern int is_container_init(struct task_struct *tsk);
1755:  
1756:  extern struct pid *cad_pid;
1757:  
1758:  extern void free_task(struct task_struct *tsk);
1759:  #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1760:  
1761:  extern void __put_task_struct(struct task_struct *t);
1762:  
1763:  static inline void put_task_struct(struct task_struct *t)
1764:  {
1765:          if (atomic_dec_and_test(&t->usage))
1766:                  __put_task_struct(t);
1767:  }
1768:  
1769:  extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1770:  extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1771:  
1772:  /*
1773:   * Per process flags
1774:   */
1775:  #define PF_STARTING     0x00000002      /* being created */
1776:  #define PF_EXITING      0x00000004      /* getting shut down */
1777:  #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1778:  #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1779:  #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1780:  #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1781:  #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1782:  #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1783:  #define PF_DUMPCORE     0x00000200      /* dumped core */
1784:  #define PF_SIGNALED     0x00000400      /* killed by a signal */
1785:  #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1786:  #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1787:  #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1788:  #define PF_FREEZING     0x00004000      /* freeze in progress. do not account to load */
1789:  #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1790:  #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1791:  #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1792:  #define PF_KSWAPD       0x00040000      /* I am kswapd */
1793:  #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1794:  #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1795:  #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1796:  #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1797:  #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1798:  #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1799:  #define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1800:  #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1801:  #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1802:  #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1803:  #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1804:  #define PF_FREEZER_NOSIG 0x80000000     /* Freezer won't send signals to it */
1805:  
1806:  /*
1807:   * Only the _current_ task can read/write to tsk->flags, but other
1808:   * tasks can access tsk->flags in readonly mode for example
1809:   * with tsk_used_math (like during threaded core dumping).
1810:   * There is however an exception to this rule during ptrace
1811:   * or during fork: the ptracer task is allowed to write to the
1812:   * child->flags of its traced child (same goes for fork, the parent
1813:   * can write to the child->flags), because we're guaranteed the
1814:   * child is not running and in turn not changing child->flags
1815:   * at the same time the parent does it.
1816:   */
1817:  #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1818:  #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1819:  #define clear_used_math() clear_stopped_child_used_math(current)
1820:  #define set_used_math() set_stopped_child_used_math(current)
1821:  #define conditional_stopped_child_used_math(condition, child) \
1822:          do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1823:  #define conditional_used_math(condition) \
1824:          conditional_stopped_child_used_math(condition, current)
1825:  #define copy_to_stopped_child_used_math(child) \
1826:          do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1827:  /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1828:  #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1829:  #define used_math() tsk_used_math(current)
1830:  
1831:  /*
1832:   * task->jobctl flags
1833:   */
1834:  #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1835:  
1836:  #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1837:  #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1838:  #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1839:  #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1840:  #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1841:  #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1842:  #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1843:  
1844:  #define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1845:  #define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1846:  #define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1847:  #define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1848:  #define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1849:  #define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1850:  #define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1851:  
1852:  #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1853:  #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1854:  
1855:  extern bool task_set_jobctl_pending(struct task_struct *task,
1856:                                      unsigned int mask);
1857:  extern void task_clear_jobctl_trapping(struct task_struct *task);
1858:  extern void task_clear_jobctl_pending(struct task_struct *task,
1859:                                        unsigned int mask);
1860:  
1861:  #ifdef CONFIG_PREEMPT_RCU
1862:  
1863:  #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1864:  #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1865:  #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1866:  
1867:  static inline void rcu_copy_process(struct task_struct *p)
1868:  {
1869:          p->rcu_read_lock_nesting = 0;
1870:          p->rcu_read_unlock_special = 0;
1871:  #ifdef CONFIG_TREE_PREEMPT_RCU
1872:          p->rcu_blocked_node = NULL;
1873:  #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1874:  #ifdef CONFIG_RCU_BOOST
1875:          p->rcu_boost_mutex = NULL;
1876:  #endif /* #ifdef CONFIG_RCU_BOOST */
1877:          INIT_LIST_HEAD(&p->rcu_node_entry);
1878:  }
1879:  
1880:  #else
1881:  
1882:  static inline void rcu_copy_process(struct task_struct *p)
1883:  {
1884:  }
1885:  
1886:  #endif
1887:  
1888:  #ifdef CONFIG_SMP
1889:  extern void do_set_cpus_allowed(struct task_struct *p,
1890:                                 const struct cpumask *new_mask);
1891:  
1892:  extern int set_cpus_allowed_ptr(struct task_struct *p,
1893:                                  const struct cpumask *new_mask);
1894:  #else
1895:  static inline void do_set_cpus_allowed(struct task_struct *p,
1896:                                        const struct cpumask *new_mask)
1897:  {
1898:  }
1899:  static inline int set_cpus_allowed_ptr(struct task_struct *p,
1900:                                         const struct cpumask *new_mask)
1901:  {
1902:          if (!cpumask_test_cpu(0, new_mask))
1903:                  return -EINVAL;
1904:          return 0;
1905:  }
1906:  #endif
1907:  
1908:  #ifdef CONFIG_NO_HZ
1909:  void calc_load_enter_idle(void);
1910:  void calc_load_exit_idle(void);
1911:  #else
1912:  static inline void calc_load_enter_idle(void) { }
1913:  static inline void calc_load_exit_idle(void) { }
1914:  #endif /* CONFIG_NO_HZ */
1915:  
1916:  #ifndef CONFIG_CPUMASK_OFFSTACK
1917:  static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1918:  {
1919:          return set_cpus_allowed_ptr(p, &new_mask);
1920:  }
1921:  #endif
1922:  
1923:  /*
1924:   * Do not use outside of architecture code which knows its limitations.
1925:   *
1926:   * sched_clock() has no promise of monotonicity or bounded drift between
1927:   * CPUs, use (which you should not) requires disabling IRQs.
1928:   *
1929:   * Please use one of the three interfaces below.
1930:   */
1931:  extern unsigned long long notrace sched_clock(void);
1932:  /*
1933:   * See the comment in kernel/sched_clock.c
1934:   */
1935:  extern u64 cpu_clock(int cpu);
1936:  extern u64 local_clock(void);
1937:  extern u64 sched_clock_cpu(int cpu);
1938:  
1939:  
1940:  extern void sched_clock_init(void);
1941:  
1942:  #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1943:  static inline void sched_clock_tick(void)
1944:  {
1945:  }
1946:  
1947:  static inline void sched_clock_idle_sleep_event(void)
1948:  {
1949:  }
1950:  
1951:  static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1952:  {
1953:  }
1954:  #else
1955:  /*
1956:   * Architectures can set this to 1 if they have specified
1957:   * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1958:   * but then during bootup it turns out that sched_clock()
1959:   * is reliable after all:
1960:   */
1961:  extern int sched_clock_stable;
1962:  
1963:  extern void sched_clock_tick(void);
1964:  extern void sched_clock_idle_sleep_event(void);
1965:  extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1966:  #endif
1967:  
1968:  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1969:  /*
1970:   * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1971:   * The reason for this explicit opt-in is not to have perf penalty with
1972:   * slow sched_clocks.
1973:   */
1974:  extern void enable_sched_clock_irqtime(void);
1975:  extern void disable_sched_clock_irqtime(void);
1976:  #else
1977:  static inline void enable_sched_clock_irqtime(void) {}
1978:  static inline void disable_sched_clock_irqtime(void) {}
1979:  #endif
1980:  
1981:  extern unsigned long long
1982:  task_sched_runtime(struct task_struct *task);
1983:  
1984:  /* sched_exec is called by processes performing an exec */
1985:  #ifdef CONFIG_SMP
1986:  extern void sched_exec(void);
1987:  #else
1988:  #define sched_exec()   {}
1989:  #endif
1990:  
1991:  extern void sched_clock_idle_sleep_event(void);
1992:  extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1993:  
1994:  #ifdef CONFIG_HOTPLUG_CPU
1995:  extern void idle_task_exit(void);
1996:  #else
1997:  static inline void idle_task_exit(void) {}
1998:  #endif
1999:  
2000:  #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2001:  extern void wake_up_idle_cpu(int cpu);
2002:  #else
2003:  static inline void wake_up_idle_cpu(int cpu) { }
2004:  #endif
2005:  
2006:  extern unsigned int sysctl_sched_latency;
2007:  extern unsigned int sysctl_sched_min_granularity;
2008:  extern unsigned int sysctl_sched_wakeup_granularity;
2009:  extern unsigned int sysctl_sched_child_runs_first;
2010:  
2011:  enum sched_tunable_scaling {
2012:          SCHED_TUNABLESCALING_NONE,
2013:          SCHED_TUNABLESCALING_LOG,
2014:          SCHED_TUNABLESCALING_LINEAR,
2015:          SCHED_TUNABLESCALING_END,
2016:  };
2017:  extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2018:  
2019:  #ifdef CONFIG_SCHED_DEBUG
2020:  extern unsigned int sysctl_sched_migration_cost;
2021:  extern unsigned int sysctl_sched_nr_migrate;
2022:  extern unsigned int sysctl_sched_time_avg;
2023:  extern unsigned int sysctl_timer_migration;
2024:  extern unsigned int sysctl_sched_shares_window;
2025:  
2026:  int sched_proc_update_handler(struct ctl_table *table, int write,
2027:                  void __user *buffer, size_t *length,
2028:                  loff_t *ppos);
2029:  #endif
2030:  #ifdef CONFIG_SCHED_DEBUG
2031:  static inline unsigned int get_sysctl_timer_migration(void)
2032:  {
2033:          return sysctl_timer_migration;
2034:  }
2035:  #else
2036:  static inline unsigned int get_sysctl_timer_migration(void)
2037:  {
2038:          return 1;
2039:  }
2040:  #endif
2041:  extern unsigned int sysctl_sched_rt_period;
2042:  extern int sysctl_sched_rt_runtime;
2043:  
2044:  int sched_rt_handler(struct ctl_table *table, int write,
2045:                  void __user *buffer, size_t *lenp,
2046:                  loff_t *ppos);
2047:  
2048:  #ifdef CONFIG_SCHED_AUTOGROUP
2049:  extern unsigned int sysctl_sched_autogroup_enabled;
2050:  
2051:  extern void sched_autogroup_create_attach(struct task_struct *p);
2052:  extern void sched_autogroup_detach(struct task_struct *p);
2053:  extern void sched_autogroup_fork(struct signal_struct *sig);
2054:  extern void sched_autogroup_exit(struct signal_struct *sig);
2055:  #ifdef CONFIG_PROC_FS
2056:  extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2057:  extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
2058:  #endif
2059:  #else
2060:  static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2061:  static inline void sched_autogroup_detach(struct task_struct *p) { }
2062:  static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2063:  static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2064:  #endif
2065:  
2066:  #ifdef CONFIG_CFS_BANDWIDTH
2067:  extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2068:  #endif
2069:  
2070:  #ifdef CONFIG_RT_MUTEXES
2071:  extern int rt_mutex_getprio(struct task_struct *p);
2072:  extern void rt_mutex_setprio(struct task_struct *p, int prio);
2073:  extern void rt_mutex_adjust_pi(struct task_struct *p);
2074:  #else
2075:  static inline int rt_mutex_getprio(struct task_struct *p)
2076:  {
2077:          return p->normal_prio;
2078:  }
2079:  # define rt_mutex_adjust_pi(p)          do { } while (0)
2080:  #endif
2081:  
2082:  extern bool yield_to(struct task_struct *p, bool preempt);
2083:  extern void set_user_nice(struct task_struct *p, long nice);
2084:  extern int task_prio(const struct task_struct *p);
2085:  extern int task_nice(const struct task_struct *p);
2086:  extern int can_nice(const struct task_struct *p, const int nice);
2087:  extern int task_curr(const struct task_struct *p);
2088:  extern int idle_cpu(int cpu);
2089:  extern int sched_setscheduler(struct task_struct *, int,
2090:                                const struct sched_param *);
2091:  extern int sched_setscheduler_nocheck(struct task_struct *, int,
2092:                                        const struct sched_param *);
2093:  extern struct task_struct *idle_task(int cpu);
2094:  extern struct task_struct *curr_task(int cpu);
2095:  extern void set_curr_task(int cpu, struct task_struct *p);
2096:  
2097:  void yield(void);
2098:  
2099:  /*
2100:   * The default (Linux) execution domain.
2101:   */
2102:  extern struct exec_domain       default_exec_domain;
2103:  
2104:  union thread_union {
2105:          struct thread_info thread_info;
2106:          unsigned long stack[THREAD_SIZE/sizeof(long)];
2107:  };
2108:  
2109:  #ifndef __HAVE_ARCH_KSTACK_END
2110:  static inline int kstack_end(void *addr)
2111:  {
2112:          /* Reliable end of stack detection:
2113:           * Some APM bios versions misalign the stack
2114:           */
2115:          return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2116:  }
2117:  #endif
2118:  
2119:  extern union thread_union init_thread_union;
2120:  extern struct task_struct init_task;
2121:  
2122:  extern struct   mm_struct init_mm;
2123:  
2124:  extern struct pid_namespace init_pid_ns;
2125:  
2126:  /*
2127:   * find a task by one of its numerical ids
2128:   *
2129:   * find_task_by_pid_ns():
2130:   *      finds a task by its pid in the specified namespace
2131:   * find_task_by_vpid():
2132:   *      finds a task by its virtual pid
2133:   *
2134:   * see also find_vpid() etc in include/linux/pid.h
2135:   */
2136:  
2137:  extern struct task_struct *find_task_by_vpid(pid_t nr);
2138:  extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2139:                  struct pid_namespace *ns);
2140:  
2141:  extern void __set_special_pids(struct pid *pid);
2142:  
2143:  /* per-UID process charging. */
2144:  extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2145:  static inline struct user_struct *get_uid(struct user_struct *u)
2146:  {
2147:          atomic_inc(&u->__count);
2148:          return u;
2149:  }
2150:  extern void free_uid(struct user_struct *);
2151:  extern void release_uids(struct user_namespace *ns);
2152:  
2153:  #include <asm/current.h>
2154:  
2155:  extern void xtime_update(unsigned long ticks);
2156:  
2157:  extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2158:  extern int wake_up_process(struct task_struct *tsk);
2159:  extern void wake_up_new_task(struct task_struct *tsk);
2160:  #ifdef CONFIG_SMP
2161:   extern void kick_process(struct task_struct *tsk);
2162:  #else
2163:   static inline void kick_process(struct task_struct *tsk) { }
2164:  #endif
2165:  extern void sched_fork(struct task_struct *p);
2166:  extern void sched_dead(struct task_struct *p);
2167:  
2168:  extern void proc_caches_init(void);
2169:  extern void flush_signals(struct task_struct *);
2170:  extern void __flush_signals(struct task_struct *);
2171:  extern void ignore_signals(struct task_struct *);
2172:  extern void flush_signal_handlers(struct task_struct *, int force_default);
2173:  extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2174:  
2175:  static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2176:  {
2177:          unsigned long flags;
2178:          int ret;
2179:  
2180:          spin_lock_irqsave(&tsk->sighand->siglock, flags);
2181:          ret = dequeue_signal(tsk, mask, info);
2182:          spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2183:  
2184:          return ret;
2185:  }
2186:  
2187:  extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2188:                                sigset_t *mask);
2189:  extern void unblock_all_signals(void);
2190:  extern void release_task(struct task_struct * p);
2191:  extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2192:  extern int force_sigsegv(int, struct task_struct *);
2193:  extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2194:  extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2195:  extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2196:  extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2197:                                  const struct cred *, u32);
2198:  extern int kill_pgrp(struct pid *pid, int sig, int priv);
2199:  extern int kill_pid(struct pid *pid, int sig, int priv);
2200:  extern int kill_proc_info(int, struct siginfo *, pid_t);
2201:  extern __must_check bool do_notify_parent(struct task_struct *, int);
2202:  extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2203:  extern void force_sig(int, struct task_struct *);
2204:  extern int send_sig(int, struct task_struct *, int);
2205:  extern int zap_other_threads(struct task_struct *p);
2206:  extern struct sigqueue *sigqueue_alloc(void);
2207:  extern void sigqueue_free(struct sigqueue *);
2208:  extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2209:  extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2210:  extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2211:  
2212:  static inline int kill_cad_pid(int sig, int priv)
2213:  {
2214:          return kill_pid(cad_pid, sig, priv);
2215:  }
2216:  
2217:  /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2218:  #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2219:  #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2220:  #define SEND_SIG_FORCED ((struct siginfo *) 2)
2221:  
2222:  /*
2223:   * True if we are on the alternate signal stack.
2224:   */
2225:  static inline int on_sig_stack(unsigned long sp)
2226:  {
2227:  #ifdef CONFIG_STACK_GROWSUP
2228:          return sp >= current->sas_ss_sp &&
2229:                  sp - current->sas_ss_sp < current->sas_ss_size;
2230:  #else
2231:          return sp > current->sas_ss_sp &&
2232:                  sp - current->sas_ss_sp <= current->sas_ss_size;
2233:  #endif
2234:  }
2235:  
2236:  static inline int sas_ss_flags(unsigned long sp)
2237:  {
2238:          return (current->sas_ss_size == 0 ? SS_DISABLE
2239:                  : on_sig_stack(sp) ? SS_ONSTACK : 0);
2240:  }
2241:  
2242:  /*
2243:   * Routines for handling mm_structs
2244:   */
2245:  extern struct mm_struct * mm_alloc(void);
2246:  
2247:  /* mmdrop drops the mm and the page tables */
2248:  extern void __mmdrop(struct mm_struct *);
2249:  static inline void mmdrop(struct mm_struct * mm)
2250:  {
2251:          if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2252:                  __mmdrop(mm);
2253:  }
2254:  
2255:  /* mmput gets rid of the mappings and all user-space */
2256:  extern void mmput(struct mm_struct *);
2257:  /* Grab a reference to a task's mm, if it is not already going away */
2258:  extern struct mm_struct *get_task_mm(struct task_struct *task);
2259:  /* Remove the current tasks stale references to the old mm_struct */
2260:  extern void mm_release(struct task_struct *, struct mm_struct *);
2261:  /* Allocate a new mm structure and copy contents from tsk->mm */
2262:  extern struct mm_struct *dup_mm(struct task_struct *tsk);
2263:  
2264:  extern int copy_thread(unsigned long, unsigned long, unsigned long,
2265:                          struct task_struct *, struct pt_regs *);
2266:  extern void flush_thread(void);
2267:  extern void exit_thread(void);
2268:  
2269:  extern void exit_files(struct task_struct *);
2270:  extern void __cleanup_sighand(struct sighand_struct *);
2271:  
2272:  extern void exit_itimers(struct signal_struct *);
2273:  extern void flush_itimer_signals(void);
2274:  
2275:  extern NORET_TYPE void do_group_exit(int);
2276:  
2277:  extern void daemonize(const char *, ...);
2278:  extern int allow_signal(int);
2279:  extern int disallow_signal(int);
2280:  
2281:  extern int do_execve(const char *,
2282:                       const char __user * const __user *,
2283:                       const char __user * const __user *, struct pt_regs *);
2284:  extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2285:  struct task_struct *fork_idle(int);
2286:  
2287:  extern void set_task_comm(struct task_struct *tsk, char *from);
2288:  extern char *get_task_comm(char *to, struct task_struct *tsk);
2289:  
2290:  #ifdef CONFIG_SMP
2291:  void scheduler_ipi(void);
2292:  extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2293:  #else
2294:  static inline void scheduler_ipi(void) { }
2295:  static inline unsigned long wait_task_inactive(struct task_struct *p,
2296:                                                 long match_state)
2297:  {
2298:          return 1;
2299:  }
2300:  #endif
2301:  
2302:  #define next_task(p) \
2303:          list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2304:  
2305:  #define for_each_process(p) \
2306:          for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2307:  
2308:  extern bool current_is_single_threaded(void);
2309:  
2310:  /*
2311:   * Careful: do_each_thread/while_each_thread is a double loop so
2312:   *          'break' will not work as expected - use goto instead.
2313:   */
2314:  #define do_each_thread(g, t) \
2315:          for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2316:  
2317:  #define while_each_thread(g, t) \
2318:          while ((t = next_thread(t)) != g)
2319:  
2320:  static inline int get_nr_threads(struct task_struct *tsk)
2321:  {
2322:          return tsk->signal->nr_threads;
2323:  }
2324:  
2325:  static inline bool thread_group_leader(struct task_struct *p)
2326:  {
2327:          return p->exit_signal >= 0;
2328:  }
2329:  
2330:  /* Do to the insanities of de_thread it is possible for a process
2331:   * to have the pid of the thread group leader without actually being
2332:   * the thread group leader.  For iteration through the pids in proc
2333:   * all we care about is that we have a task with the appropriate
2334:   * pid, we don't actually care if we have the right task.
2335:   */
2336:  static inline int has_group_leader_pid(struct task_struct *p)
2337:  {
2338:          return p->pid == p->tgid;
2339:  }
2340:  
2341:  static inline
2342:  int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2343:  {
2344:          return p1->tgid == p2->tgid;
2345:  }
2346:  
2347:  static inline struct task_struct *next_thread(const struct task_struct *p)
2348:  {
2349:          return list_entry_rcu(p->thread_group.next,
2350:                                struct task_struct, thread_group);
2351:  }
2352:  
2353:  static inline int thread_group_empty(struct task_struct *p)
2354:  {
2355:          return list_empty(&p->thread_group);
2356:  }
2357:  
2358:  #define delay_group_leader(p) \
2359:                  (thread_group_leader(p) && !thread_group_empty(p))
2360:  
2361:  /*
2362:   * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2363:   * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2364:   * pins the final release of task.io_context.  Also protects ->cpuset and
2365:   * ->cgroup.subsys[].
2366:   *
2367:   * Nests both inside and outside of read_lock(&tasklist_lock).
2368:   * It must not be nested with write_lock_irq(&tasklist_lock),
2369:   * neither inside nor outside.
2370:   */
2371:  static inline void task_lock(struct task_struct *p)
2372:  {
2373:          spin_lock(&p->alloc_lock);
2374:  }
2375:  
2376:  static inline void task_unlock(struct task_struct *p)
2377:  {
2378:          spin_unlock(&p->alloc_lock);
2379:  }
2380:  
2381:  extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2382:                                                          unsigned long *flags);
2383:  
2384:  #define lock_task_sighand(tsk, flags)                                   \
2385:  ({      struct sighand_struct *__ss;                                    \
2386:          __cond_lock(&(tsk)->sighand->siglock,                           \
2387:                      (__ss = __lock_task_sighand(tsk, flags)));          \
2388:          __ss;                                                           \
2389:  })                                                                      \
2390:  
2391:  static inline void unlock_task_sighand(struct task_struct *tsk,
2392:                                                  unsigned long *flags)
2393:  {
2394:          spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2395:  }
2396:  
2397:  /* See the declaration of threadgroup_fork_lock in signal_struct. */
2398:  #ifdef CONFIG_CGROUPS
2399:  static inline void threadgroup_fork_read_lock(struct task_struct *tsk)
2400:  {
2401:          down_read(&tsk->signal->threadgroup_fork_lock);
2402:  }
2403:  static inline void threadgroup_fork_read_unlock(struct task_struct *tsk)
2404:  {
2405:          up_read(&tsk->signal->threadgroup_fork_lock);
2406:  }
2407:  static inline void threadgroup_fork_write_lock(struct task_struct *tsk)
2408:  {
2409:          down_write(&tsk->signal->threadgroup_fork_lock);
2410:  }
2411:  static inline void threadgroup_fork_write_unlock(struct task_struct *tsk)
2412:  {
2413:          up_write(&tsk->signal->threadgroup_fork_lock);
2414:  }
2415:  #else
2416:  static inline void threadgroup_fork_read_lock(struct task_struct *tsk) {}
2417:  static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) {}
2418:  static inline void threadgroup_fork_write_lock(struct task_struct *tsk) {}
2419:  static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) {}
2420:  #endif
2421:  
2422:  #ifndef __HAVE_THREAD_FUNCTIONS
2423:  
2424:  #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2425:  #define task_stack_page(task)   ((task)->stack)
2426:  
2427:  static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2428:  {
2429:          *task_thread_info(p) = *task_thread_info(org);
2430:          task_thread_info(p)->task = p;
2431:  }
2432:  
2433:  static inline unsigned long *end_of_stack(struct task_struct *p)
2434:  {
2435:          return (unsigned long *)(task_thread_info(p) + 1);
2436:  }
2437:  
2438:  #endif
2439:  
2440:  static inline int object_is_on_stack(void *obj)
2441:  {
2442:          void *stack = task_stack_page(current);
2443:  
2444:          return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2445:  }
2446:  
2447:  extern void thread_info_cache_init(void);
2448:  
2449:  #ifdef CONFIG_DEBUG_STACK_USAGE
2450:  static inline unsigned long stack_not_used(struct task_struct *p)
2451:  {
2452:          unsigned long *n = end_of_stack(p);
2453:  
2454:          do {    /* Skip over canary */
2455:                  n++;
2456:          } while (!*n);
2457:  
2458:          return (unsigned long)n - (unsigned long)end_of_stack(p);
2459:  }
2460:  #endif
2461:  
2462:  /* set thread flags in other task's structures
2463:   * - see asm/thread_info.h for TIF_xxxx flags available
2464:   */
2465:  static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2466:  {
2467:          set_ti_thread_flag(task_thread_info(tsk), flag);
2468:  }
2469:  
2470:  static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2471:  {
2472:          clear_ti_thread_flag(task_thread_info(tsk), flag);
2473:  }
2474:  
2475:  static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2476:  {
2477:          return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2478:  }
2479:  
2480:  static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2481:  {
2482:          return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2483:  }
2484:  
2485:  static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2486:  {
2487:          return test_ti_thread_flag(task_thread_info(tsk), flag);
2488:  }
2489:  
2490:  static inline void set_tsk_need_resched(struct task_struct *tsk)
2491:  {
2492:          set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2493:  }
2494:  
2495:  static inline void clear_tsk_need_resched(struct task_struct *tsk)
2496:  {
2497:          clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2498:  }
2499:  
2500:  static inline int test_tsk_need_resched(struct task_struct *tsk)
2501:  {
2502:          return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2503:  }
2504:  
2505:  static inline int restart_syscall(void)
2506:  {
2507:          set_tsk_thread_flag(current, TIF_SIGPENDING);
2508:          return -ERESTARTNOINTR;
2509:  }
2510:  
2511:  static inline int signal_pending(struct task_struct *p)
2512:  {
2513:          return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2514:  }
2515:  
2516:  static inline int __fatal_signal_pending(struct task_struct *p)
2517:  {
2518:          return unlikely(sigismember(&p->pending.signal, SIGKILL));
2519:  }
2520:  
2521:  static inline int fatal_signal_pending(struct task_struct *p)
2522:  {
2523:          return signal_pending(p) && __fatal_signal_pending(p);
2524:  }
2525:  
2526:  static inline int signal_pending_state(long state, struct task_struct *p)
2527:  {
2528:          if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2529:                  return 0;
2530:          if (!signal_pending(p))
2531:                  return 0;
2532:  
2533:          return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2534:  }
2535:  
2536:  static inline int need_resched(void)
2537:  {
2538:          return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2539:  }
2540:  
2541:  /*
2542:   * cond_resched() and cond_resched_lock(): latency reduction via
2543:   * explicit rescheduling in places that are safe. The return
2544:   * value indicates whether a reschedule was done in fact.
2545:   * cond_resched_lock() will drop the spinlock before scheduling,
2546:   * cond_resched_softirq() will enable bhs before scheduling.
2547:   */
2548:  extern int _cond_resched(void);
2549:  
2550:  #define cond_resched() ({                       \
2551:          __might_sleep(__FILE__, __LINE__, 0);   \
2552:          _cond_resched();                        \
2553:  })
2554:  
2555:  extern int __cond_resched_lock(spinlock_t *lock);
2556:  
2557:  #ifdef CONFIG_PREEMPT_COUNT
2558:  #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2559:  #else
2560:  #define PREEMPT_LOCK_OFFSET     0
2561:  #endif
2562:  
2563:  #define cond_resched_lock(lock) ({                              \
2564:          __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2565:          __cond_resched_lock(lock);                              \
2566:  })
2567:  
2568:  extern int __cond_resched_softirq(void);
2569:  
2570:  #define cond_resched_softirq() ({                                       \
2571:          __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2572:          __cond_resched_softirq();                                       \
2573:  })
2574:  
2575:  /*
2576:   * Does a critical section need to be broken due to another
2577:   * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2578:   * but a general need for low latency)
2579:   */
2580:  static inline int spin_needbreak(spinlock_t *lock)
2581:  {
2582:  #ifdef CONFIG_PREEMPT
2583:          return spin_is_contended(lock);
2584:  #else
2585:          return 0;
2586:  #endif
2587:  }
2588:  
2589:  /*
2590:   * Thread group CPU time accounting.
2591:   */
2592:  void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2593:  void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2594:  
2595:  static inline void thread_group_cputime_init(struct signal_struct *sig)
2596:  {
2597:          raw_spin_lock_init(&sig->cputimer.lock);
2598:  }
2599:  
2600:  /*
2601:   * Reevaluate whether the task has signals pending delivery.
2602:   * Wake the task if so.
2603:   * This is required every time the blocked sigset_t changes.
2604:   * callers must hold sighand->siglock.
2605:   */
2606:  extern void recalc_sigpending_and_wake(struct task_struct *t);
2607:  extern void recalc_sigpending(void);
2608:  
2609:  extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2610:  
2611:  static inline void signal_wake_up(struct task_struct *t, bool resume)
2612:  {
2613:          signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2614:  }
2615:  static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2616:  {
2617:          signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2618:  }
2619:  
2620:  /*
2621:   * Wrappers for p->thread_info->cpu access. No-op on UP.
2622:   */
2623:  #ifdef CONFIG_SMP
2624:  
2625:  static inline unsigned int task_cpu(const struct task_struct *p)
2626:  {
2627:          return task_thread_info(p)->cpu;
2628:  }
2629:  
2630:  extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2631:  
2632:  #else
2633:  
2634:  static inline unsigned int task_cpu(const struct task_struct *p)
2635:  {
2636:          return 0;
2637:  }
2638:  
2639:  static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2640:  {
2641:  }
2642:  
2643:  #endif /* CONFIG_SMP */
2644:  
2645:  extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2646:  extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2647:  
2648:  extern void normalize_rt_tasks(void);
2649:  
2650:  #ifdef CONFIG_CGROUP_SCHED
2651:  
2652:  extern struct task_group root_task_group;
2653:  
2654:  extern struct task_group *sched_create_group(struct task_group *parent);
2655:  extern void sched_destroy_group(struct task_group *tg);
2656:  extern void sched_move_task(struct task_struct *tsk);
2657:  #ifdef CONFIG_FAIR_GROUP_SCHED
2658:  extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2659:  extern unsigned long sched_group_shares(struct task_group *tg);
2660:  #endif
2661:  #ifdef CONFIG_RT_GROUP_SCHED
2662:  extern int sched_group_set_rt_runtime(struct task_group *tg,
2663:                                        long rt_runtime_us);
2664:  extern long sched_group_rt_runtime(struct task_group *tg);
2665:  extern int sched_group_set_rt_period(struct task_group *tg,
2666:                                        long rt_period_us);
2667:  extern long sched_group_rt_period(struct task_group *tg);
2668:  extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2669:  #endif
2670:  #endif /* CONFIG_CGROUP_SCHED */
2671:  
2672:  extern int task_can_switch_user(struct user_struct *up,
2673:                                          struct task_struct *tsk);
2674:  
2675:  #ifdef CONFIG_TASK_XACCT
2676:  static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2677:  {
2678:          tsk->ioac.rchar += amt;
2679:  }
2680:  
2681:  static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2682:  {
2683:          tsk->ioac.wchar += amt;
2684:  }
2685:  
2686:  static inline void inc_syscr(struct task_struct *tsk)
2687:  {
2688:          tsk->ioac.syscr++;
2689:  }
2690:  
2691:  static inline void inc_syscw(struct task_struct *tsk)
2692:  {
2693:          tsk->ioac.syscw++;
2694:  }
2695:  #else
2696:  static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2697:  {
2698:  }
2699:  
2700:  static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2701:  {
2702:  }
2703:  
2704:  static inline void inc_syscr(struct task_struct *tsk)
2705:  {
2706:  }
2707:  
2708:  static inline void inc_syscw(struct task_struct *tsk)
2709:  {
2710:  }
2711:  #endif
2712:  
2713:  #ifndef TASK_SIZE_OF
2714:  #define TASK_SIZE_OF(tsk)       TASK_SIZE
2715:  #endif
2716:  
2717:  #ifdef CONFIG_MM_OWNER
2718:  extern void mm_update_next_owner(struct mm_struct *mm);
2719:  extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2720:  #else
2721:  static inline void mm_update_next_owner(struct mm_struct *mm)
2722:  {
2723:  }
2724:  
2725:  static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2726:  {
2727:  }
2728:  #endif /* CONFIG_MM_OWNER */
2729:  
2730:  static inline unsigned long task_rlimit(const struct task_struct *tsk,
2731:                  unsigned int limit)
2732:  {
2733:          return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2734:  }
2735:  
2736:  static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2737:                  unsigned int limit)
2738:  {
2739:          return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2740:  }
2741:  
2742:  static inline unsigned long rlimit(unsigned int limit)
2743:  {
2744:          return task_rlimit(current, limit);
2745:  }
2746:  
2747:  static inline unsigned long rlimit_max(unsigned int limit)
2748:  {
2749:          return task_rlimit_max(current, limit);
2750:  }
2751:  
2752:  #endif /* __KERNEL__ */
2753:  
2754:  #endif